Построение гиперболической функции
Уравнение гиперболической функции: .
Произведем линеаризацию модели путем замены . В результате получим линейное уравнение
.
Рассчитаем его параметры по данным таблицы 4.
,
.
Получим следующее уравнение гиперболической модели:
.
Определим индекс корреляции
.
Связь между показателем y и фактором x можно считать достаточно сильной.
Индекс детерминации:
.
Вариация результата t (объема выпуска продукции) на 83,5% объясняется вариацией фактора x (объемом капиталовложений).
F-критерий Фишера:
.
Таблица 4.
y | x | X | y×X | X2 | |||||||
0,0156 | 1,0000 | 0,0002441 | 13,43 | 180,33 | 61,5 | 2,489 | 6,1954 | 3,889 | |||
0,0147 | 0,8235 | 0,0002163 | 5,43 | 29,47 | 58,2 | ‑2,228 | 4,9637 | 3,978 | |||
0,0122 | 0,6341 | 0,0001487 | 1,43 | 2,04 | 49,3 | 2,740 | 7,5089 | 5,270 | |||
0,0132 | 0,6316 | 0,0001731 | ‑2,57 | 6,61 | 52,7 | ‑4,699 | 22,078 | 9,789 | |||
0,0119 | 0,5952 | 0,0001417 | ‑0,57 | 0.32653 | 48,2 | 1,777 | 3,1591 | 3,555 | |||
0,0104 | 0,4792 | 0,0001085 | ‑4,57 | 20,90 | 42,9 | 3,093 | 9,5648 | 6,723 | |||
0,0100 | 0,3800 | 0,0001000 | ‑12,57 | 158,04 | 41,4 | ‑3,419 | 11,69 | 8,997 | |||
Итого | 0,0880 | 4,5437 | 0,0011325 | 397,71 | 354,2 | ‑0,246 | 65,159 | 42,202 | |||
Средн. знач. | 50,57 | 0,0126 | 0,6491 | 0,0001618 | 6,029 |
для a = 0,05; , .
Уравнение регрессии с вероятностью 0,95 в целом статистически значимое, т. к. .
Средняя относительная ошибка
.
В среднем расчетные значения для гиперболической модели отличаются от фактических значений на 6,029%.
Для выбора лучшей модели построим сводную таблицу результатов.
Таблица 5.
Параметры Модель | Коэффициент детерминации R2 | F-критерий Фишера | Индекс корреляции ryx (ryx) | Средняя относительная ошибка eотн |
1. Линейная | 0,822 | 23,09 | 0,907 | 5,685 |
2. Степенная | 0,828 | 24,06 | 0,910 | 6,054 |
3. Показательная | 0,828 | 24,06 | 0,910 | 5,909 |
4. Гиперболическая | 0,835 | 25,30 | 0,914 | 6,029 |
Все модели имеют примерно одинаковые характеристики, но большее значение F-критерия Фишера и большее значение коэффициента детерминации R2 имеет гиперболическая модель. Ее можно взять в качестве лучшей для построения прогноза.
Расчет прогнозного значения результативного показателя:
Прогнозное значение результативного признака (объема выпуска продукции) определим по уравнению гиперболической модели, подставив в него планируемую (заданную по условию) величину объема капиталовложений:
(млн. руб.).
Фактические, расчетные и прогнозные значения по лучшей модели отобразим на графике.
Рис 2. Прогноз по лучшей модели.
Тема 2. Множественная регрессия и корреляция
1. Предварительно ознакомиться с теоретическим материалом:
Л1 [Гл. 3], Л2 [Гл. 2], Л3 [Гл. 4].
Примеры с решениями.
Пример. По предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. руб.) от ввода в действие новых основных фондов ( от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих ( ).
Номер предприятия | Номер предприятия | ||||||
7,0 | 3,9 | 10,0 | 9,0 | 6,0 | 21,0 | ||
7,0 | 3,9 | 14,0 | 11,0 | 6,4 | 22,0 | ||
7,0 | 3,7 | 15,0 | 9,0 | 6,8 | 22,0 | ||
7,0 | 4,0 | 16,0 | 11,0 | 7,2 | 25,0 | ||
7,0 | 3,8 | 17,0 | 12,0 | 8,0 | 28,0 | ||
7,0 | 4,8 | 19,0 | 12,0 | 8,2 | 29,0 | ||
8,0 | 5,4 | 19,0 | 12,0 | 8,1 | 30,0 | ||
8,0 | 4,4 | 20,0 | 12,0 | 8,5 | 31,0 | ||
8,0 | 5,3 | 20,0 | 14,0 | 9,6 | 32,0 | ||
10,0 | 6,8 | 20,0 | 14,0 | 9,0 | 36,0 |
Требуется:
1.Построить линейную модель множественной регрессии. Записать стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат.
2.Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их.
3.Найти скорректированный коэффициент множественной детерминации. Сравнить его с нескорректированным (общим) коэффициентом детерминации.
4.С помощью -критерия Фишера оценить статистическую надежность уравнения регрессии и коэффициента детерминации .
5.С помощью частных -критериев Фишера оценить целесообразность включения в уравнение множественной регрессии фактора после и фактора после .
6.Составить уравнение линейной парной регрессии, оставив лишь один значащий фактор.
Решение:
Для удобства проведения расчетов поместим результаты промежуточных расчетов в таблицу:
№ | |||||||||
7,0 | 3,9 | 10,0 | 27,3 | 70,0 | 39,0 | 15,21 | 100,0 | 49,0 | |
7,0 | 3,9 | 14,0 | 27,3 | 98,0 | 54,6 | 15,21 | 196,0 | 49,0 | |
7,0 | 3,7 | 15,0 | 25,9 | 105,0 | 55,5 | 13,69 | 225,0 | 49,0 | |
7,0 | 4,0 | 16,0 | 28,0 | 112,0 | 64,0 | 16,0 | 256,0 | 49,0 | |
7,0 | 3,8 | 17,0 | 26,6 | 119,0 | 64,6 | 14,44 | 289,0 | 49,0 | |
7,0 | 4,8 | 19,0 | 33,6 | 133,0 | 91,2 | 23,04 | 361,0 | 49,0 | |
8,0 | 5,4 | 19,0 | 43,2 | 152,0 | 102,6 | 29,16 | 361,0 | 64,0 | |
8,0 | 4,4 | 20,0 | 35,2 | 160,0 | 88,0 | 19,36 | 400,0 | 64,0 | |
8,0 | 5,3 | 20,0 | 42,4 | 160,0 | 106,0 | 28,09 | 400,0 | 64,0 | |
10,0 | 6,8 | 20,0 | 68,0 | 200,0 | 136,0 | 46,24 | 400,0 | 100,0 | |
9,0 | 6,0 | 21,0 | 54,0 | 189,0 | 126,0 | 36,0 | 441,0 | 81,0 | |
11,0 | 6,4 | 22,0 | 70,4 | 242,0 | 140,8 | 40,96 | 484,0 | 121,0 | |
9,0 | 6,8 | 22,0 | 61,2 | 198,0 | 149,6 | 46,24 | 484,0 | 81,0 | |
11,0 | 7,2 | 25,0 | 79,2 | 275,0 | 180,0 | 51,84 | 625,0 | 121,0 | |
12,0 | 8,0 | 28,0 | 96,0 | 336,0 | 224,0 | 64,0 | 784,0 | 144,0 | |
12,0 | 8,2 | 29,0 | 98,4 | 348,0 | 237,8 | 67,24 | 841,0 | 144,0 | |
12,0 | 8,1 | 30,0 | 97,2 | 360,0 | 243,0 | 65,61 | 900,0 | 144,0 | |
12,0 | 8,5 | 31,0 | 102,0 | 372,0 | 263,5 | 72,25 | 961,0 | 144,0 | |
14,0 | 9,6 | 32,0 | 134,4 | 448,0 | 307,2 | 92,16 | 1024,0 | 196,0 | |
14,0 | 9,0 | 36,0 | 126,0 | 504,0 | 324,0 | 81,0 | 1296,0 | 196,0 | |
Сумма | 123,8 | 1276,3 | 2997,4 | 837,74 | 10828,0 | 1958,0 | |||
Ср. знач. | 9,6 | 6,19 | 22,3 | 63,815 | 229,05 | 149,87 | 41,887 | 541,4 | 97,9 |
Найдем средние квадратические отклонения признаков:
;
;
.
1.Вычисление параметров линейного уравнения множественной регрессии.
Для нахождения параметров линейного уравнения множественной регрессии
необходимо решить следующую систему линейных уравнений относительно неизвестных параметров , , :
либо воспользоваться готовыми формулами:
; ; .
Рассчитаем сначала парные коэффициенты корреляции:
;
;
.
Находим
;
;
.
Таким образом, получили следующее уравнение множественной регрессии:
.
Коэффициенты и стандартизованного уравнения регрессии находятся по формулам:
;
.
Т.е. стандартизованное уравнение будет выглядеть следующим образом:
.
Так как стандартизованные коэффициенты регрессии можно сравнивать между собой, то можно сказать, что ввод в действие новых основных фондов оказывает большее влияние на выработку продукции, чем удельный вес рабочих высокой квалификации.
Сравнивать влияние факторов на результат можно также при помощи средних коэффициентов эластичности:
.
Вычисляем:
; .
Т.е. увеличение только основных фондов (от своего среднего значения) или только удельного веса рабочих высокой квалификации на 1% увеличивает в среднем выработку продукции на 0,61% или 0,20% соответственно. Таким образом, подтверждается большее влияние на результат фактора , чем фактора .
2.Коэффициенты парной корреляции мы уже нашли:
; ; .
Они указывают на весьма сильную связь каждого фактора с результатом, а также высокую межфакторную зависимость (факторы и явно коллинеарны, т.к. . При такой сильной межфакторной зависимости рекомендуется один из факторов исключить из рассмотрения.
Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании (устранении влияния) других факторов, включенных в уравнение регрессии.
При двух факторах частные коэффициенты корреляции рассчитываются следующим образом:
;
.
Если сравнить коэффициенты парной и частной корреляции, то можно увидеть, что из-за высокой межфакторной зависимости коэффициенты парной корреляции дают завышенные оценки тесноты связи. Именно по этой причине рекомендуется при наличии сильной коллинеарности (взаимосвязи) факторов исключать из исследования тот фактор, у которого теснота парной зависимости меньше, чем теснота межфакторной связи.
Коэффициент множественной корреляции определить через матрицу парных коэффициентов корреляции:
,
где
– определитель матрицы парных коэффициентов корреляции;
– определитель матрицы межфакторной корреляции.
.
Коэффициент множественной корреляции
.
Аналогичный результат получим при использовании других формул:
;
;
.
Коэффициент множественной корреляции показывает на весьма сильную связь всего набора факторов с результатом.
3.Нескорректированный коэффициент множественной детерминации оценивает долю вариации результата за счет представленных в уравнении факторов в общей вариации результата. Здесь эта доля составляет и указывает на весьма высокую степень обусловленности вариации результата вариацией факторов, иными словами – на весьма тесную связь факторов с результатом.
Скорректированный коэффициент множественной детерминации
определяет тесноту связи с учетом степеней свободы общей и остаточной дисперсий. Он дает такую оценку тесноты связи, которая не зависит от числа факторов, и поэтому может сравниваться по разным моделям с разным числом факторов. Оба коэффициента указывают на весьма высокую (более ) детерминированность результата в модели факторами и .
4.Оценку надежности уравнения регрессии в целом и показателя тесноты связи дает -критерий Фишера:
.
В нашем случае фактическое значение -критерия Фишера:
.
Получили, что (при ), т.е. вероятность случайно получить такое значение -критерия не превышает допустимый уровень значимости . Следовательно, полученное значение не случайно, оно сформировалось под влиянием существенных факторов, т.е. подтверждается статистическая значимость всего уравнения и показателя тесноты связи .
5.С помощью частных -критериев Фишера оценим целесообразность включения в уравнение множественной регрессии фактора после и фактора после при помощи формул:
;
.
Найдем и .
;
.
Имеем
;
.
Получили, что . Следовательно, включение в модель фактора после того, как в модель включен фактор статистически нецелесообразно: прирост факторной дисперсии за счет дополнительного признака оказывается незначительным, несущественным; фактор включать в уравнение после фактора не следует.
Если поменять первоначальный порядок включения факторов в модель и рассмотреть вариант включения после , то результат расчета частного -критерия для будет иным. , т.е. вероятность его случайного формирования меньше принятого стандарта . Следовательно, значение частного -критерия для дополнительно включенного фактора не случайно, является статистически значимым, надежным, достоверным: прирост факторной дисперсии за счет дополнительного фактора является существенным. Фактор должен присутствовать в уравнении, в том числе в варианте, когда он дополнительно включается после фактора .
6.Общий вывод состоит в том, что множественная модель с факторами и с содержит неинформативный фактор . Если исключить фактор , то можно ограничиться уравнением парной регрессии:
, .