Средняя хронологическая
Средняя величина есть обобщающая количественная характеристика однородных явлений по какому-либо варьирующему признаку.
Применение средних величин позволяет охарактеризовать определенный признак совокупности одним числом, несмотря на количественные различия единиц по данному признаку внутри совокупности.
Следовательно, средняя величина есть обобщающая характеристика совокупности; средняя величина выражает типичное свойство совокупности; средняя величина — величина абстрактная, а не конкретная, так как в ней сглаживаются отдельные значения единиц совокупности, имеющие отклонения в ту и другую сторону; реальность средней величины достигается, если она вычисляется из одной совокупности.
Пользуясь средними величинами при анализе массовых явлений, необходимо всегда помнить, что часто в средней величине скрываются отстающие хозяйствующие субъекты, которые имеют низкие показатели своей деятельности и, наоборот, не выявляются фирмы, компании, предприятия и т. д., которые работают весьма эффективно. Это возможно, как уже говорилось выше, в связи со свойством средней, в которой отклонения отдельных значений признака от ее величины взаимно погашаются. (Так, например, при условии выполнения плана розничного товарооборота в целом по холдингу, занимающемуся продажей товаров, часть фирм, входящих в него, не выполнила план и, наоборот, другая часть перевыполнила план товарооборота.) Поэтому, кроме средней, следует использовать и отдельные индивидуальные показатели работы фирм, входящих в холдинг.
В эк. практике исп.-ся широкий круг показателей, вычисленных в виде средних величин.
Напр, обобщающим показателем доходов рабочих АО служит средний доход одного рабочего, определяемый отношением фонда з/п и выплат социального характера за рассматриваемый период (год, квартал, месяц) к численности рабочих АО.
Вычисление среднего –один из распространенных приемов обобщения; средний показатель отражает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от колич. значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.
Там, где возникает потребность обобщения, расчет таких характеристик приводит к замене множества различных инд. значений признака средним показателем, характеризующим всю совокупность явлений, что позволяет выявить закономерности, присущие массовым общ. явлениям, незаметные в единичных явлениях.
Средняяотражает характерный, типичный, реальный уровень изучаемых явлений, характеризует эти уровни и их изменения во времени и в пространстве; это сводная характеристика закономерностей процесса в тех условиях, в к-рых он протекает.
Выбор вида средней определяется эк. содержанием определенного показателя и исходных данных.
1)- Класс степенных средних - арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т.д. Помимо степенных средних в с/практике используются
2) Структурные средние - применяются для изучения внутреннего строения и структуры рядов распределения значений признака. К таким показателям относятся мода и медиана..
Средняя хронологическая
Средняя хронологическая — это средний уровень ряда динамики, т. е. средняя, исчисленная по совокупности значений показателя в разные моменты или периоды времени. В зависимости от вида ряда динамики применяются различные способы ее расчета, а именно расчет средней хронологической интервального ряда и средней хронологической моментного ряда.
Средней хронологической интервального ряда является средняя величина из уровней интервального ряда динамики, которая исчисляется по формуле
где — средний уровень ряда;
у — уровень ряда динамики;
n — число членов ряда.
Средней хронологической моментного ряда является средняя величина из уровней моментного ряда динамики. Если f(t) есть функция, выражающая изменение моментного показателя во времени, то за время (t) от а до b средняя хронологическая моментyого ряда равна:
Однако данных непрерывного наблюдения значения f(t) в распоряжении статистики, как правило, нет. Поэтому в зависимости от характера изменения показателя и имеющихся данных применяются различные методы расчета. При равных промежутках времени между датами, на которые имеются данные, и равномерном изменении размера показателя между датами средняя хронологическая моментного ряда обычно исчисляется по формуле:
где у — уровень ряда; n — число всех членов ряда; — средний уровень.
Если периоды времени, отделяющие одну дату от другой, не равны между собой, то расчет средней хронологической моментного ряда производится по формуле средней взвешенной арифметической, в качестве весов которой принимаются отрезки времени между датами, т. е. по формуле:
где Т— время, в течение которого данный уровень ряда (у) оставался без изменения.
Известно, например, что в январе 2007 года произошло следующее изменение численности сотрудников компании "Бест": было на 1 января 551 чел., уволился 2 января один сотрудник, было принято 6 января 24 человека, 16 января— 6 человек, уволилось 25 января— 10 сотрудников. Требуется определить среднюю численность сотрудников компании "Бест" в январе 2007 г. Рассчитаем число календарных дней, в течение которых численность сотрудников компании "Бест" оставалась без изменения, и произведение этих чисел.
Таблица 5
Данные для расчета средней численности сотрудников компании "Бест"
Численность сотрудников компании «Бест», чел.(y) | Число календарных дней, в течение которых данная численность сотрудников оставалась безизменения (T) | Произведение численности сотрудников на число календарных дней(yT) |
ИТОГО |
Используя данные произведенных расчетов, получим:
В отличие от первого способа расчета средней хронологической моментного ряда второй способ дает точное значение средней.