Критерии и оценки по критериям

Мы называем критериями оценки альтернатив показатели их привлекательности (или непривлекательности) для участников процесса выбора [1].

Использование критериев для оценки альтернатив требует определения градаций качества. Так, для критерия «стоимость» может быть использована непрерывная количественная шкала оценок в денежных единицах. Для критерия «наличие дачи» может быть принята качественная двоичная шкала: есть либо нет. Иначе говоря, существуют шкалы оценок по критериям [1].

Измерению подлежат различные проявления свойств тел, веществ, явлений, процессов. Некоторые свойства при этом проявляются количественно (длина, масса, температура и т.п.), а другие – качественно (например, цвет, т.к. не имеет смысла выражение типа «красный цвет больше (меньше) синего») [3].

Многообразие (количественное или качественное) проявлений любого свойства образуют множества, отображения элементов которых на систему условных знаков образуют шкалы измерения этих свойств [3].

Такими системами знаков являются, например, множество обозначений (названий) цветов, совокупность классификационных символов или понятий, множество баллов оценки состояний объекта, множество действительных чисел и т.д. [3].

Элементы множеств проявления свойств находятся в определенных логических соотношениях между собой. Такими соотношениями могут быть «эквивалентность» (равенство) или «сходство» (близость) этих элементов, их количественная различимость («больше», «меньше»), допустимость выполнения определенных математических операций и т.д. Эти особенности элементов множеств проявления свойств определяют типы (особенности) соответствующих им шкал измерений [3].

В соответствии с логической структурой проявления свойств в теории измерений различают несколько основных типов шкал измерений: наименований, порядка, разностей (интервалов), отношений и др. Каждый тип шкалы обладает определенными признаками [3].

Шкала наименований– шкала измерений качественного свойства, характеризующаяся только соотношением эквивалентности различных проявлений этого свойства [3]. Другие названия этой шкалы: номинальная, классификационная или назывная.

Шкалы наименований представляют собой простейший тип измерений, в которых числа или символы используются только для классификации объектов. Номер класса сам по себе не имеет количественного содержания, он может быть заменен названием либо шифром. Типичные примеры номинальных шкал – классификация психотипов человека по знакам Зодиака в астрологии, деление литературных и музыкальных произведений на стили и жанры, деление жизненного цикла продукции на этапы и др.

Шкала порядка – шкала количественного свойства, характеризующаяся соотношениями эквивалентности и порядка по возрастанию (убыванию) различных проявлений свойства [3].

Этот тип шкалы служит для выявления упорядоченности объектов по какому-либо признаку. Например, капитан I ранга, капитан II ранга, капитан III ранга в Военно-морском флоте; система оценки знаний в средних и высших учебных заведениях: отлично, хорошо, удовлетворительно, неудовлетворительно; сравнительная оценка твердости минералов по шкале Мооса и др. Применение порядковой шкалы измерений называют также ранжированием.

Шкала разностей (интервалов) – шкала измерений количественного свойства, характеризующаяся соотношениями эквивалентности, порядка, суммирования интервалов различных проявлений свойства [3].

Характерный пример – шкала интервалов времени. Интервалы времени (например, периоды работы, периоды учебы) можно складывать и вычитать.

Это также такой метод оценивания, при котором существенной характеристикой является разность между значениями оцениваемых параметров, измеряемая числом установленных в шкале единиц. При этом начало отсчета может быть установлено произвольно. Измерения в шкале интервалов отвечают на вопрос: на сколько? (больше – меньше, лучше – хуже, ближе – дальше и т.д.). Примером применения шкалы интервалов могут служить измерения температуры в градусах Цельсия (или Реомюра, или Фаренгейта), измерение периодов времени – в годах, месяцах, неделях, днях и т.д.

Шкала отношений – шкала измерений количественного свойства, характеризующаяся соотношениями эквивалентности, порядка, пропорциональности различных проявлений свойства [3].

Это такой метод оценивания, при котором существенным становятся ответы на вопрос: во сколько раз значение какого-либо параметра объекта больше или меньше (лучше или хуже и т.д.) по сравнению с эталоном? Шкала отношений применима к большинству измерений физических величин: размера, массы, плотности, силы, скорости и т.д.

Нетрудно заметить, что все шкалы упорядочены по уровням развития. Применение каждой последующей шкалы в этом ранжированном ряду предполагает обязательное применение всех предыдущих шкал.

Измерения в порядковой шкале требуют, чтобы объекты были проклассифицированы в номинальной шкале. Для измерений в шкале интервалов необходимо, чтобы объекты были проклассифицированы в номинальной шкале, упорядочены (проранжированы) по какому-либо признаку в порядковой шкале и т.д.

В порядковой шкале возможны логические операции (больше – меньше, лучше – хуже), но невозможны арифметические действия. На отградуированной шкале интервалов может быть определена разность между любыми двумя значениями параметра, но нельзя определить, во сколько раз значение параметра больше или меньше (лучше или хуже) по отношению к эталону. На все вопросы отвечает шкала отношений, в ней возможны все логические и арифметические действия.

Выбор той или иной шкалы для измерений обусловлен спецификой решаемой задачи, уровнем компетентности оператора и другими факторами.

Альтернативы

Альтернативы бывают доминирующие и доминируемые.

Назовем альтернативу А доминирующей по отношению к альтернативе В, если по всем критериям оценки альтернативы А не хуже, чем альтернативы В, а хотя бы по одному критерию оценка А лучше. При этом альтернатива В называется доминируемой [1].

ó Пример. Предположим, что нам следует произвести выбор из трех альтернатив:

1. совершить туристическую поездку в Финляндию,

2. либо приобрести путевку для путешествия в Австралию;

3. либо отправиться с автобусным туром по городам Европы.

Назначим критерии для выбора. Пусть это будут два критерия: «стоимость» и «привлекательность». Оценки по назначенным критериям сведем в табл.3.1.

Таблица 3.1.

Оценки альтернатив по критериям

Альтернатива Критерий
Стоимость Привлекательность
1. Финляндия Небольшая Малая
2. Австралия Высокая Большая
3. Европа Небольшая Большая

Представим рассматриваемые альтернативы их оценками по критериям в графическом виде на рис.3.1.

Критерии и оценки по критериям - student2.ru

Предположим, что по какой-то причине автобусный тур по городам Европы срывается (например, по причине того, что не сформировалась группа в нужном количестве человек). В соответствии с рис.3.2 туры в Финляндию и в Австралию не находятся в отношении доминирования. По одному из критериев лучше альтернатива 2, по другому – альтернатива 1.

Альтернативы относятся к множеству Эджворта-Парето, если каждая из них превосходит любую другую по какому-то из критериев [1].

Множество Эджворта-Парето названо так по именам ученых, впервые обративших внимание на альтернативы, не уступающие друг другу по критериальным оценкам, т.е. на альтернативы, не находящиеся в отношении дминирования. Альтернативы, принадлежащие множеству Эджворта-Парето, принято называть несравнимыми. Их действительно невозможно сравнить непосредственно на основе критериальных оценок. Но если решение должно быть принято, то сравнение альтернатив возможно на основе дополнительной информации. А именно: необходимо решить, что более важно: экономия денег или обилие новых впечатлений [1].

Множество Эджворта-Парето включает в себя наиболее «контрастные» альтернативы, сложные для сравнения. Типичным примером альтернатив, принадлежащих множеству Эджворта-Парето, являются альтернативы наименьшей стоимости – наибольшей эффективности [1].

Наши рекомендации