Дискретные случайные величины

o Случайная величина Х называется дискретной, если она принимает конечное либо счетное число значений, т.е. Ωх—конечно или счетно.

o Законом распределения дискретной случайной величины Х называется совокупность пар чисел вида (хi, рi), где xi—возможные значения случайной величины, а pi—вероятности, с которыми случайная величина принимает эти значения, т.е. , причем .

Простейшей формой задания дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины и соответствующие им вероятности.

X x1 x2 xn
P p1 p2 pn

Такая таблица называется рядом распределения дискретной случайной величины.

Ряд распределения можно изобразить графически. В этом случае по оси абсцисс откладывают значения xi, а по оси ординат—вероятности pi. Полученные точки соединяют отрезками и получают ломаную, которая является одной из форм задания закона распределения дискретной величины.

Пример. Рассмотрим следующую дискретную случайную величину

X
P 0,1 0,3 0,2 0,4

o Говорят, что дискретная случайная величина Х имеет биномиальное распределение с параметрами (n,p), если она может принимать целые неотрицательные значения с вероятностями .

X K n
P     pn

Пример. µ—число успехов в n испытаниях. µ имеет биномиальное распределение с параметрами (n,p). Обозначают X~B (n,p), т.е. случайная величина Х имеет биномиальное распределение с параметрами (n,p).

o Говорят, что случайная величина Х имеет распределение Пуассона с параметром λ (λ>0), если она принимает целые неотрицательные значения с вероятностями .

X k
P      

Обозначают , т.е. случайная величина Х имеет распределение Пуассона с параметром λ.

Пусть производятся независимые испытания, в каждом из которых вероятность появления события А равна р (0<p<1) и, следовательно, вероятность его не появления q=1-p. Испытания заканчиваются как только появится событие А. Таким образом, если событие А появилось в k-ом испытании, то в предшествующих k-1 испытаниях оно не появлялось.

Обозначим через X дискретную случайную величину—число испытаний, которое нужно провести до первого появления события А. Очевидно, возможными значениями случайной величины Х являются натуральные числа.

Пусть в первых k-1 испытаниях событие А не наступало, а в k-ом испытании появилось. Вероятность этого события .

o Говорят, что случайная величина Х имеет геометрическое распределение с параметром р (0<р<1), если она принимает натуральные значения с вероятностями , где q=1-p.

o

X k
P p qp q2p qk-1p

Очевидно, что вероятности появления значений 1,2,3… образуют геометрическую прогрессию с первым членом р и знаменателем q (0<q<1).

.

Пример 1. Из орудия производится стрельба по цели до первого попадания. Вероятность попадания в цель р=0,6. Найти вероятность того, что попадание произойдет при третьем выстреле.

p=0,6; q=0,4; k=3. .

Пример 2. Монета брошена два раза. Написать ряд распределения случайной величины X—числа выпадений «герба».

Решение. Вероятность выпадения «герба» в каждом бросании монеты , вероятность того, что «герб» не появится .

При бросании монеты «герб» может появится либо 2, либо 1, либо 0 раз. Т.е. возможные значения Х таковы: х1=0,х2=1, х3=2.

Найдем вероятности этих возможных значений по формуле Бернулли:

;

;

.

Ряд распределения:

X
P 0,25 0,5 0,25

Пример 3. Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,0002. Найти вероятность того, что на базу прибудут три негодных изделия(n-велико,p-мало).

По условию n=5000, p=0,0002, k=3. По формуле Пуассона , искомая вероятность .

Простейший поток событий.

Рассмотрим события, которые наступают в случайные моменты времени.

o Потоком событий называют последовательность событий, которые наступают в случайные моменты времени.

Примерами потоков служат: поступление вызовов на АТС, на пункт неотложной медицинской помощи, прибытие самолетов в аэропорт, клиентов на предприятие бытового обслуживания, последовательность отказов элементов и многие другие.

Среди свойств, которыми могут обладать потоки, выделим свойства стационарности, отсутствия последствия и ординарности.

o Поток событий называется стационарным, если вероятность появления k событий за промежуток времени длительности t зависит только от k и t.

Таким образом, свойство стационарности характеризуется тем, что вероятность появления k событий на любом промежутке времени зависит только от числа k и от длительности t промежутка и не зависит от начала его отсчета; при этом различные промежутки времени предполагаются непересекающимися. Например, вероятности появления k событий на промежутках времени (1, 7), (10, 16), (Т, Т+6) одинаковой длительности t=6 единиц времени равны между собой.

o Поток событий называется ординарным,если за бесконечно малый промежуток времени может появиться не более одного события.

Таким образом, свойство ординарности характеризуется тем, что появление двух и более событий за малый промежуток времени практически невозможно. Другими словами, вероятность появления более одного события в один и тот же момент времени практически равна нулю.

o Говорят, что поток событий обладает свойством отсутствия последствия, если имеет место взаимная независимость появлений того или иного числа событий в непересекающиеся промежутки времени. Таким образом, свойство отсутствия последствия характеризуется тем, что вероятность появления k событий на любом промежутке времени не зависит от того, появились или не появились события в моменты времени, предшествующие началу рассматриваемого промежутка. Другими словами, условная вероятность появления k событий на любом промежутке времени, вычисленная при произвольном предположении о том, что происходило до начала рассматриваемого промежутка (т.е. сколько событий появилось, в какой последовательности), равна безусловной вероятности. Следовательно, предыстория потока не сказывается на вероятности появления событий в ближайшем будущем.

o Поток событий называется простейшим или пуассоновским, если он стационарный, ординарный, без последствия.

o Интенсивностью потока λназывают среднее число событий, которые появляются в единицу времени.

Если постоянная интенсивность потока известна, то вероятность появления k событий простейшего потока за промежуток времени длительности t определяется по формуле:

, . Формула Пуассона.

Эта формула отражает все свойства простейшего потока, поэтому ее можно считать математической моделью простейшего потока.

Пример. Среднее число вызовов, поступающих на АТС в одну минуту, равно двум. Найти вероятность того, что за 5 минут поступит: а) два вызова; б) менее двух вызовов; в) не менее двух вызовов. Поток вызовов предполагается простейшим.

По условию λ=2, t=5, k=2. По формуле Пуассона

А)—это событие практически невозможно.

Б)—событие практически невозможно, т.к. события «не поступило ни одного вызова» и «поступил один вызов»­­—несовместимы.

В)—это событие практически достоверно.

Наши рекомендации