Проблема сравнения коэффициентов связи
Заканчивая обсуждение вопроса о коэффициентах связи типа “признак-признак”, необходимо упомянуть актуальную для социологии проблему сравнения всех таких коэффициентов. Однако здесь мы не будем ее подробно обсуждать, отнеся читателя к соответствующей литературе [Елисеева, Рукавишщников, 1982. С.89-101; Интерпретация и анализ ..., 1987.С.34-36; Лакутин, Толстова, 1990, 1992; Миркин, 1980.С.94-109; Паниотто, Максименко, 1982. С.124-125; Рабочая книга ...,1983. С.191-192].
Отметим лишь очень коротко несколько отдельных моментов.
Любой критерий сравнения, как всякий подход к математическому анализу данных, основан на предположениях о том, что реальности адекватны некоторые формальные построения, отражающие определенные аспекты интерпретации исходных данных. Другими словами, для того, чтобы можно было говорить о сравнении, необходимо заранее сформировать некоторую модель того, что мы понимаем под схожими (несхожими) коэффициентами.
Наиболее обоснованное теоретически и часто использующееся в статистической литературе основание для сравнения рассматриваемых коэффициентов базируется на обсужденном выше предположении о том, что за каждым номинальным признаком стоит некоторая латентная непрерывная количественная переменная. Коротко говоря, суть соответствующих подходов заключается в следующем. Исследователь моделирует с помощью ЭВМ некоторую “генеральную совокупность”, описываемую двумя непрерывными переменными с заданным коэффициентом корреляции между ними. Затем упомянутые переменные искусственным образом превращаются в номинальные, из “генеральной” совокупности формируется множество выборок и для каждой из них подсчитываются подлежащие сравнению коэффициенты. Когда выборок организуется достаточно много, появляется возможность сравнения “поведения” отдельных коэффициентов друг с другом.
Сказанное в предыдущих параграфах свидетельствует о том, что все рассмотренные коэффициенты различны. За каждым стоит своя модель, свое понимание этой связи. Вопрос о том, какова же истинная связь между переменными, если такой -то коэффициент равен 0,7, а такой-то - 0,2, не имеет смысла. В описанной ситуации можно сказать только то, что связь в первом смысле (смысле, отвечающем первому коэффициенту) более высока, чем связь во втором смысле. И для того, чтобы найти “истинную” связь, надо использовать целый набор коэффициентов. Каждый их них как бы отвечает отдельной стороне “истины”. А для того, чтобы “истина”, как бриллиант, засверкала всеми своими гранями, необходимо иметь эти грани перед глазами все сразу, “поворачивая” нашу связь в разные стороны.
Однако имеет смысл сказать не только о различии, но и о сходстве разных коэффициентов. Если посмотреть на них с другой стороны, окажется, что не так уж сильно они расходятся друг с другом. И это не случайно – все-таки речь идет о разных способах формализации одного и того же явления – интуитивно понимаемой связи между переменными. Действительно, можно показать (и это в определенной мере демонстрировалось выше), что так или иначе, в разной степени, но все коэффициенты основаны на представлении о том, что существование связи между двумя признаками означает одновременное соблюдение следующих условий: сильное отклонение от пропорциональности столбцов (строк) исходной таблицы сопряженности; улучшение качества прогнозна значений одного признака при получении информации о значении другого; тот факт, что определенные значения одного признака “любят” встречаться вместе с определенными значениями другого признака. Однако относительно последнего обстоятельства можно заметить следующее (приведем цитату из [Кендалл, Стьюарт, 1973. С. 724]).
"Следует обратить внимание на то, что статистическая связь отличается от связи в обычном смысле. В повседневной речи мы говорим, что А и В связаны, если они достаточно часто встречаются вместе, а в статистике они считаются связанными только в том случае, если А встречается относительно чаще среди В, чем среди не-В. Если 90% курящих страдают плохим пищеварением, то мы не можем сказать, что курение и плохое пищеварение связаны, пока не будет показано, что среди некурящих страдают плохим пищеварением менее, чем 90%." Последнее обстоятельство связано с тем, о чем пойдет речь в следующем параграфе.