Графічні зображення розподілу частот
Використання графіків сприяє виконанню таких завдань:
1) наочному зображенню сутності явища, яке вивчається;
2) системному аналізу явища;
3) популяризації результатів дослідження.
Як наслідок, досягається стислість узагальнення інформації, коли в конкретній формі виявляється динаміка явищ у системі різноманітних зв’язків з оточуючою дійсністю.
4.1. Полігон розподілу – ламана лінія, яка з’єднує певні точки (єдиний спосіб графічного зображення дискретних (перервних) статистичних розподілів. Умовою побудови полігону розподілу є визначення частоти (f) елементів. Наприклад: 2,4,4,5,3,4,5,4. Внаслідок впорядкування низки отримуємо: 2 (елемент вибірки, п) – 1 (частота, f), 3 (п) – 1(f), 4 (п) – 4(f), 5(п) – 2(f). Тоді будується власне полігон розподілу, де п відкладається на осі абсцис (Х), а f – на осі ординат (Y).
4.2. Гістограма – графічне зображення у вигляді стовпців, в основі якого знаходиться полігон розподілу.
4.3. Лінійний графік – ламана лінія, яка з’єднує певні точки статистичних розподілів без визначення частот елементів вибірки
4.4. Діаграма – графічне зображення у вигляді стовпців, в основі якого знаходиться лінійний графік.
4.5. Секторна діаграма – розподіл сукупності на частини шляхом поділу круга.
5. Основні види середніх значень.
5.1. Середнє арифметичне (Мср.) – характеризує досліджувану сутність окремим числом; порівнює окремі величини з середнім значення, визначає тенденції розвитку певного явища; дає змогу обчислити інші статистичні показники, оскільки деякі з них опираються на середнє арифметичне; не аналізує сукупність різностороннє. Використовується більше для інтервальних шкал. [Приклад: елементи вибірки – 2,4,8,7,4,9,5. Тоді Мср.=(2+4+8+7++4+9+5):7, де 7 – кількісний склад вибірки. Тобто Мср. = 5,57].
5.2. Медіана (Ме=(п+1)/2) – значення змінної, яке є середнім, центральним за положенням (місцем) у загальній впорядкованій низці елементів; застосовується для визначення точної середини низки; співпадає з Мср. у випадку симетричного розподілу. Використовується більше для порядкових шкал. [Приклад 1: 2,4,5,6,3,4,6,7,8. Внаслідок впорядкування низки, яка є непарною за кількістю, отримуємо 2,3,4,4,5,6,6,7,8. Тоді (9+1):2=5, де 9 (п) є кількісним складам вибірки. Тобто Ме у вибірці знаходиться на п’ятому місці і в даному випадку дорівнює 5. Приклад 2: якщо вибірка є парною за кількістю, наприклад має 10 елементів (2,3,4,4,4,5,5,5,6,7), то процедура знаходження медіани має дещо інший вигляд. Використовуючи названу формулу, отримаємо Ме=(10+1):2=5,5, тобто місце медіани, яке знаходиться між елементами 4 і 5. Тоді Ме=(4+5):2=4,5].
5.3. Мода (Мо) – значення, яке найчастіше зустрічається у вибірці. [Приклад 1: елементи вибірки 2,3,4,5,6,7,8,8. тоді Мо=8, оскільки названий елемент найчастіше зустрічається. Емпіричне визначення моди можна також здійснювати на основі формули простої інтерполяції (передбачення):
Fмо – Fмо-1
Мо= Амо+а –––––––––––––––––––––––––––––
(Fмо – Fмо-1)+(Fмо – Fмо+1),
де Амо- початок модального інтервалу (у даному випадку – 8), а – величина, або ширина, модального розряду (1), Fмо – Fмо–1 – частота розряду, який знаходиться зліва від модального (1), Fмо – Fмо+1 – частота розряду, який знаходиться справа від модального (0), Fмо – частота модального розряду (2). Підставивши у формулу названі числа, отримуємо Мо=8+1(2–1/(2–1)(2+0))=8+1(1/2)=8,5. Приклад 2. Якщо показників, які найчастіше зустрічається у вибірці декілька, то модальних значень буде стільки ж: елементи вибірки 2,3,4,4,4,55,5,6. Тоді Мо 1 = 4, а Мо 2 = 5].
Література
(рекомендації для створення експериментальної частини курсових, дипломних, магістерських робіт)
1. Бурлачук Л.Ф., Морозов С.М. Словарь-справочник по психологической диагностике. – К.: Наукова думка, 1989. – 198 с.
2. Волков В.С., Волкова Н.В. Задачи и упражнения по детской психологии. – М.: Просвещение, 1991. – 143 с.
3. Иващенко Ф.И. Задачи по общей, возрастной и педагогической психологии. – М.: Просвещение, 1985. – 95 с.
4. Кыверялг А.А. Методы исследования в профессиональной педагогике. – Таллин: Валгу-с, 1980. – 386 с.
5. Михальчик Т.С., Гурьянова Е.И. Семинарские и практические занятия, контрольные и курсовые работы по психологии. – М.: Изд. МГУ, 1987. – 80 с.
6. Платонов К.К. Занимательная психология. – М.: Молодая гвардия, 1962. – 328 с.
7. Польская О.Я. Психологический практикум в школе. – М.: Просвещение, 1979. – 103 с.
8. Практикум з психології. – Львів: Вища школа, 1978. – 183 с.
9. Практикум по общей и экспериментальной психологии / Под ред. А.А. Крылова. – Л.: Изд. ЛГУ, 1987. – 256 с.
10. Практикум по общей психологии / Под ред. А.И. Щербакова. – М.: Просвещение, 1990. – 288 с.
11. Практические занятия по общей психологии / Под ред. А.И.Щербакова. – М.: Педагогика, 1990. – 256 с.
12. Практические занятия по психологии / Под ред. А.В.Петровского. – М.: Просвещение, 1972. – 167 с.
13. Рабочая книга социолога. – АН СССР. Институт социологических исследований. – М.: Наука, 1982. – 477 с.
14. Сборник задач по общей психологии / Под ред. В.С.Мерлина. – М.: Просвещение, 1974. – 208 с.
15. Сосновский В.А. Лабораторный практикум по общей психологии. – М.: Просвещение, 1979. – 156 с.
16. Скребец В.А. Психологическая диагностика. – К.: МАУП, 1999. – 120 с.
17. Таратунский Ф.И., Таратунская Н. Задачи и упражнения по общей психологии. – Минск: Университетское, 1988. – 176 с.
18. Фридман Л.К., Пушкина Т.А., Каплунович И.Я. Изучение личности учащегося и ученических коллективов. – М.: Просвещение, 1986. – 234 с.