На горячее водоснабжение

Вопрос

Расчет топочных устройств

Расчет топочных устройств принятой или заданной конструкции определяют в соответствии со схемами рис. 114.

На горячее водоснабжение - student2.ru

Границами объема являются плоскости, проходящие через оси экранов или обращенные в топку поверхности огнеупорного слоя. В выходном сечении расчет топочных устройств ограничен поверхностью, проходящей через оси труб первой по ходу газов поверхности (ширмы, фестонированного перегревателя, фестона). Если шаг между ширмами S1 > 0,7, то объем, занятый ширмами, включают в объем топки. При прямоугольном в плане сечении топки ее объем, м3,

На горячее водоснабжение - student2.ru

где Fδ - поверхность бокового экрана, м2; ат - ширина топки по фронту, м.

Площадь поверхности Fст стен топки рассчитывают, используя схемы рис. 114. При наличии двусветных экранов, а также ширм, входящих в объем топки, их поверхность включают в общую полную поверхность топки. В расчет топочных устройств обычно включают лучевоспринимающую поверхность нагрева, м2,

На горячее водоснабжение - student2.ru

где Fпл ( - площадь поверхности стен топки занятой i-м экраном, м2, хl - угловой коэффициент экрана, характеризующий долю теплового потока, излучаемого факелом на стены (см. рис. 115).

На горячее водоснабжение - student2.ru

Расчет топочных устройств и суммирование поверхностей отдельных экранов проводят в том случае, если их конструктивное исполнение в топке (шаг, диаметр, покрытие огнеупорным слоем, местоположение теплоизоляции по отношению к трубам) различно. Высокая степень использования поверхности в радиационном теплообмене достигается путем уменьшения шага между трубами (S/d- 1,06/1,07) и применения цельносварных экранов, для которых хl = 1. Значение хl = 1 - для экранов, покрытых огнеупорной обмазкой, а также при определении лучевоспринимающей поверхности выходного окна топки. При расчете величины Fпл t из площади полной поверхности экрана Fст , исключают площадь ft неэкранированных участков (амбразуры горелок, лючки, газосообщающие окна двусветных экранов):

На горячее водоснабжение - student2.ru

Отношение лучевоспринимающей поверхности стен топки к ее полной называют степенью экранирования,

На горячее водоснабжение - student2.ru

Для современных котлов большой паропроизводительности степень экранированиях - 0,96/0,98. У котлов малой мощности, где экранами покрыты не все стены топки, величина х заметно меньше.

Расчет горения газообразного топлива

В изолированных, как и совместных параллельных и последовательных реакциях, исходные вещества вступают в химические соединения, и образуют новые продукты в определенных, так называемых стехиометрических соотношениях (закон кратных отношений Дальтона).

Согласно этому закону горючие составляющие топлива вступают в химическое реагирование с кислородом в определенном количественном соотношении. Расход кислорода и количество образующихся продуктов сгорания определяются из стехиометрических уравнений горения, записанных для одного моля каждого горючего составляющего. Относя эти уравнения к 1 кг горючего и выразив газообразные вещества в объемных единицах, делением их массовых количеств на значения плотностей, получим количество кислорода и выход продуктов сгорания на 1 кг каждой составляющей горючей массы топлива в м3 при давлении 0,1013 МПа (760 мм рт. ст.) и 0°С.

Для углерода: С+O2=СO2.

12,01 кг С+32 кг O2=44,01 кг СO2; (14.2)
1 кг С+1,866 м3 O2=1,866 м3 СО2.


Для серы: S+O2=SO2.

32,06 кг S+32 кг О2=64,06 кг SO2; (14.3)
1 кг S+0,7 м3 O2=0,7 м3 SO2.


Для водорода: 2Н22=2Н2О.

4,032 кг Н2+32 кг O2=36,032 кг Н2O; (14.4)
1 кг Н2+5,55 м3 O2=9 кг Н2О.


Суммируя затраты кислорода на сжигание горючих элементов, содержащихся в 1 кг топлива, и вычитая количество кислорода топлива, получим теоретически необходимое количество кислорода для сжигания 1 кг твердого или жидкого топлива На горячее водоснабжение - student2.ru м3/кг:

На горячее водоснабжение - student2.ru (14.5)


В формуле: Cр; Sрор+к; Hр; Ор — соответственно массовое содержание углерода, серы, водорода и кислорода в топливе, %; На горячее водоснабжение - student2.ru — плотность кислорода, кг/м3.

В воздухе содержится кислорода примерно 21% по объему, поэтому теоретически необходимое количество воздуха для горения VO, м3/кг, т. е. количество воздуха, которое необходимо для полного сжигания 1 кг топлива при условии, что весь содержащийся в нем кислород прореагирует, составляет:

На горячее водоснабжение - student2.ru (14.6)


или в кг/кг

На горячее водоснабжение - student2.ru (14.7)


В процессе горения по мере расходования топлива и кислорода и уменьшения их действующих концентраций выгорание все более замедляется. В камерах сгорания парогенераторов условия реагирования ухудшаются также из-за недостаточно совершенного перемешивания вступающих в процесс горения больших масс топлива и воздуха. Поэтому воздух для горения подают больше его теоретически необходимого количества.

Отношение количества воздуха, действительно поступившего в топку Vв, к теоретически необходимому количеству называют коэффициентом избытка воздуха:

На горячее водоснабжение - student2.ru (14.8)


Для вновь проектируемых парогенераторов величину αт выбирают в зависимости от вида сжигаемого топлива, метода сжигания и конструкции топки. Для пылеугольных топок по условиям достижения большего значения к. п. д. и интенсификации процесса горения оптимальными являются αт=1,2—1,25, при этом нижний предел относится к бурым и каменным углям, а верхний — к тощим углям и антрацитам. При размоле бурых и каменных углей в молотковых мельницах рекомендуется выбрать верхний предел, т. е. αт=1,25. При жидком шлакоудалении из-за повышения температурного уровня и уменьшения присосов αт может быть снижен для однокамерных топок до 1,2; двухкамерных и циклонных топок — до 1,1. При сжигании природных газов и мазута в агрегатах, снабженных автоматикой горения и регуляторами давления в газопроводе, αт может быть снижен до 1,05.

На действующих парогенераторах балансовыми испытаниями при различных нагрузках определяется оптимальное значение αт, при котором суммарная величина потерь тепла от механической и химической неполноты сгорания топлива и потерь тепла с уходящими газами окажется минимальной.

Объемы и масса воздуха и продуктов сгорания при сжигании газового топлива рассчитываются по стехиометрическим уравнениям сгорания отдельных горючих составляющих.

Теоретическое количество воздуха V0, м33, определяется как суммарный его расход на сжигание горючих 1 м3 сухого газового топлива при α=1 по формуле:

На горячее водоснабжение - student2.ru (14.9)


При отсутствии данных о составе непредельных углеводородов принимается, что они состоят из С2Н4.

Обычно в топочных камерах поддерживается небольшое разрежение для предотвращения выбивания газов в помещение котельной. В последующих за топкой газоходах парогенератора устанавливается разрежение, превышающее разрежение в топке на величину сопротивления, рассматриваемого и предшествующих газоходов. Через неплотности в металлической обшивке и обмуровке парогенератора, через лазы и гляделки происходит присос атмосферного воздуха, в газоходы находящиеся под разрежением, увеличивающий объем продуктов сгорания, протекающих в них.

Расчет объемов продуктов сгорания топлива производится для выбранных значений αт и коэффициентов избытка воздуха последующих газоходов, определяемых суммированием с αт присосов воздуха в рас­сматриваемом и предыдущих газоходах, выраженных в долях от V0. Предварительно по формулам определяется теоретический объем продуктов сгорания, а затем для каждого участка газового тракта в соответствии с величиной присоса определяется общий объем продуктов сгорания и, наконец, по формуле - объем водяных паров.

В осваиваемых в последнее время газоплотных парогенераторах присосы воздуха отсутствуют. Объем газов по газоходам остается одинаковым и рассчитывается по коэффициенту избытка воздуха в топке.

Приведем формулы для расчета объема продуктов сгорания газообразного топлива при α=1.

Теоретический объем азота, м33,

На горячее водоснабжение - student2.ru (14.10)


Объем трехатомных газов, м33,

На горячее водоснабжение - student2.ru (14.11)


На горячее водоснабжение - student2.ru (14.12)


где dг.тл — влагосодержание газового топлива, отнесенное к 1 м3 сухого газа, г/м3.

Масса продуктов сгорания, кг/м3,

На горячее водоснабжение - student2.ru (14.13)


где плотность сухого газа На горячее водоснабжение - student2.ru , кг/м3, выражается формулой

На горячее водоснабжение - student2.ru (14.14)


Коэффициент избытка воздуха определяется газовым анализом проб продуктов сгорания, отбираемых из газоходов, с последующим расчетом по приводным ниже формулам.

Теоретически необходимый объем воздуха можно выразить как разность между действительно поданным объемом воздуха на 1 кг топлива и объемом избыточного воздуха и представить его в виде

На горячее водоснабжение - student2.ru (14.15)


Эксплуатационный контроль за поддержанием необходимого избытка воздуха в топке и за плотностью газоходов более правильно вести по содержанию кислорода в продуктах сгорания, для чего применяются автоматические кислородомеры.

14.8.Конструкции газогорелочных устройств

Газовые горелки могут быть классифицированы по следующим признакам:

по длине образующегося факела на длиннопламенные и короткопламенные;

по светимости пламени на светящийся или слабосветящийся факел;

по теплоте сгорания сжигаемого газа на горелки для высококалорийных и низкокалорийных газов;

по давлению перед горелкой на низко- и высоконапорные;

по количеству подводящих трубопроводов на одно- и двухпроводные и т. д.

Одним из существенных признаков является способ смешения сжигаемого газа с воздухом, необходимым для горения. По этому признаку горелки можно разделить на следующие три типа.

Горелки без предварительного смешения газа с воздухом. Газ и воздух, в необходимом для горения количестве, подаются раздельно через соответствующие каналы горелки. Горючая смесь образуется в факеле в процессе турбулентного смешения газа и воздуха после выхода их из горелки.

Для примера в качестве горелки такого типа можно привести трубчатую горелку для низкокалорийных газов (рис. 14.2). Газ поступает через газовый коллектор и присоединенные к нему трубы, а воздух через противоположный коллектор в межтрубное пространство. Смешение происходит в струйных потоках на выходе из труб.

На горячее водоснабжение - student2.ru
Рис. 14.2. Трубчатые горелки для низкокалорийных газов

Эти горелки применяют для сжигания низкокалорийных газов в больших количествах и в печной технике, когда нужно иметь растянутый светящийся факел с более равномерной теплоотдачей по длине рабочего пространства печи.

Горелки предварительного смешения. Горелки, работающие по принципу кинетического сжигания, применяют в случаях, когда требуется сжигать газ с высоким тепловым напряжением объема и сечения камеры порядка (10—40) • 103 кВт/м3к (50—80) • 103 кВт/м2 с минимальным химическим недожогом и с коротким слабосветящимся пламенем. Предварительное смешение осуществляется в смесителях, из которых подготовленная смесь поступает в горелку. К этому типу относятся туннельные и другие типы горелок однородной газовоздушной смеси, получаемой предварительным смешением газа с воздухом в смесителях различной конструкции.

В промышленности широкое распространение получили инжекционные горелки туннельного типа (рис. 14.3), которые обес­печивают авторегулирование постоянного соотношения расходов газа и воздуха и допускают сжигание запыленных газов. Горелки более термостойки и обладают повышенной пропускной способностью при малых сопротивлениях.

На горячее водоснабжение - student2.ru
Рис. 14.3. Инжекционные горелки с керамическим туннельным каналом а – однопроводная горелка с одноканальным туннелем; б – двухпроводная горелка с могоканальным туннелем

При высоком давлении сжигаемого газа применяют одно проводные горелки (рис. 14.3, а) с эжекцией воздуха из атмосферы, а при сжигании газа низкого давления — двухпроводные горелки (рис. 14.3, б) с принудительной подачей воздуха. Широкое распространение получили также однопроводные инжекционные горелки, в которых цилиндрическая камера смешения заканчивается не керамическим каналом, а металлическим участком диффузор — конфузор.

Горелки с частичным смешением. Эти горелки снабжены укороченными смесителями, в которых происходит частичное смешение. Смешение продолжается и завершается в факеле в процессе горения.

Горелки, работающие по этому принципу, широко применяются в энергетике для сжигания природные газов.

В горелках с частичным смешением для низкокалорийных газов, в частности в горелке ВНИИМТ для доменного газа (рис. 14.4), из-за соизмеримых расходов газов и воздуха газы и воздух подаются чередующимися плоскими потоками через каналы в форкамеру, в каналах которой начинается смешение и горение. Процесс смешения и горения продолжается и завершается в выходных каналах. Сечение туннеля горелки определяется по количеству продуктов сгорания и скорости их, принимаемой в пределах 30—40 м/с.

На горячее водоснабжение - student2.ru
Рис. 14.4. Горелка для доменного газа

Вопрос

Простейший контур испарительной системы (рис.89) состоит из обогреваемой подъемной трубы 1, необогреваемой опускной трубы 2, соединительного коллектора 3 и барабана 4, в котором происходит разделение пароводяной смеси на пар и воду.

За счет подвода теплоты в какой-то точке (точка закипания) по высоте подъемной трубы происходит закипание воды и выше нее находится пароводяная смесь.

За счет разности плотностей воды в опускных трубах и пароводяной смеси в подъемных трубах возникает движение воды вниз, а пароводяной смеси вверх и устанавливается естественная циркуляция. Создаваемый при этом движущий напор затрачивается на преодоление сопротивления в системе.

Расчет простого циркуляционного контура сводится к определению движущего напора (Рдв) и гидравлического сопротивления в опускных и подъемных трубах, а также к определению полезного напора контура (ΔРпол).

На горячее водоснабжение - student2.ru

Рис. 89. Циркуляционный контур экрана:

1 - подъемная труба; 2 – необогреваемая опускная труба;

3 - соединительный коллектор; 4 – барабан

Движущий напор циркуляции составляет

Рдв = hпол g ρв – (hнеоб g ρв + hэк g ρв + hпвс g ρпвс) , Па.

Полная высота контура складывается из высоты необогреваемого участка (hнеоб), экономайзерного участка (hэк) и высоты участка, где образуется пароводяная смесь hпвс

hпол = hнеоб + hэк + hпвс ,

следовательно

Рдв = hпвс g (ρв - ρпвс) , Па .

Таким образом, движущий напор зависит от высоты обогреваемого участка, высоты экономайзерного участка и от разности плотностей воды и пароводяной смеси. При увеличении давления в котле движущийся напор естественной циркуляции снижается, так как уменьшается разность (ρв - ρпвс). При критическом давлении Ркр=22,5 МПа ρв = ρпвс и движущийся напор отсутствует. Поэтому котлоагрегаты с естественной циркуляцией применяются до давлений пара менее 14,0 МПа.

Гидравлический расчет циркуляционного контура сводится к определению сопротивления в опускных и подъемных трубах. В общем случае сопротивление складывается из потерь напора на местные сопротивления и сопротивление трения.

Местные сопротивления

ΔРм = ζ hд , Па ,

где ζ - коэффициент местных сопротивлений (например: поворот, сужение сечения и т.д.); На горячее водоснабжение - student2.ru - динамический напор, где w - скорость воды или пароводяной смеси, м/с (скорость воды находится в пределах 1,5-3,5 м/с); ρ – плотность воды или пароводяной смеси, кг/м3.

Сопротивление трения

На горячее водоснабжение - student2.ru , Па ,

где λ – коэффициент трения; l – длина (высота) участка, м; dэ – эквивалентный диаметр (dвн), м .

Тогда потери напора в опускных трубах

ΔРоп = Σ ΔРм + ΔРтр , Па ,

а в подъемных

ΔРпод = (Σ ΔРм + ΔРтр)в + (Σ ΔРм + ΔРтр)пвс , Па ,

т.е. в подъемных трубах отдельно рассчитывается сопротивление экономайзерного участка и паросодержащего участка.

Движущий напор в циркуляционном контуре затрачивается на преодоление гидравлического сопротивления в опускных и подъемных трубах

Рдв = ΔРоп + ΔРпод , Па .

Разность движущего напора и сопротивления подъемной части циркуляционного контура составляет полезный напор, расходуемый на преодоление опускной части контура

Рпол = Рдв - ΔРпод = ΔРоп , Па .

При гидравлическом расчете предварительно принимается несколько значений скорости циркуляции во входных участках подъемных труб wо = 0,6-1,5 м/с и строятся графические характеристики при этих значениях (рис.90). На пересечении кривых находится расчетная точка А , для которой Рпол = ΔРоп .

По истинному значению скорости w определяется расход воды, циркулирующей в контуре Dв = ρв w fжс и кратность циркуляции К = Dв / Dп , т.е. отношение количества воды, циркулирующей в контуре, к количеству пара, содержащегося в пароводяной смеси на выходе из контура за 1 ход. Кратность циркуляции можно также представить как К = 1/х , где х – паросодержание пароводяной смеси.

Для котлов с давлением Рпе ≤ 4,0 МПа кратность циркуляции находится в пределах К = 20-30; Рпе= 4,0-10,0 МПа → К = 10-18; Рпе = 14,0 МПа → К = 6-8.

На горячее водоснабжение - student2.ru

Рис. 90. Гидравлическая характеристика простого циркуляционного

контура

Сложный циркуляционный контур

Сложный циркуляционный контур (рис. 91) состоит из несложных простых циркуляционных контуров, имеющих одно или более общих звеньев. К сложным контурам относятся также пучки труб, имеющие различную длину и неравномерный обогрев.

На горячее водоснабжение - student2.ru

Рис. 91. Сложный циркуляционный контур:

1 – барабан; 2 – опускной стояк; 3,4 – опускные трубы бокового и

заднего экранов; 5,6,7 – нижние коллектора фронтового, бокового

и заднего экранов; 8,9,10 – подъемные трубы фронтового, бокового

и заднего экранов; 11 – фестон; 12,13 – верхние коллектора

бокового и заднего экранов; 14,15 – пароотводящие трубы бокового

и заднего экранов

Циркуляционные контуры фронтового и боковых экранов имеют общий элемент - опускной стояк, поэтому этот контур будет сложным.

Расчет сложного циркуляционного контура выполняется аналогично и ведется по отдельным контурам.

Вопрос

Расчетный расход сетевой воды, кг/ч, для определения диаметров труб в водяных тепловых сетях при качественном регулировании отпуска теплоты следует определять отдельно для отопления, вентиляции и горячего водоснабжения по формулам:

На отопление

На горячее водоснабжение - student2.ru (38)

На вентиляцию

На горячее водоснабжение - student2.ru (39)

на горячее водоснабжение

в открытых системах теплоснабжения

среднечасовой

На горячее водоснабжение - student2.ru (40)

максимальный

На горячее водоснабжение - student2.ru (41)

в закрытых системах теплоснабжения

среднечасовой, при параллельной схеме присоединения водоподогревателей

На горячее водоснабжение - student2.ru (42)

максимальный, при параллельной схеме присоединения водоподогревателей

На горячее водоснабжение - student2.ru (43)

среднечасовой, при двухступенчатых схемах присоединения водоподогревателей

На горячее водоснабжение - student2.ru (44)

максимальный, при двухступенчатых схемах присоединения водоподогревателей

На горячее водоснабжение - student2.ru (45)

В формулах (38 – 45) расчетные тепловые потоки приводятся в Вт, теплоёмкость с принимается равной На горячее водоснабжение - student2.ru . Расчет по этим формулам производится поэтапно, для температур На горячее водоснабжение - student2.ru .

Суммарные расчетные расходы сетевой воды, кг/ч, в двухтрубных тепловых сетях в открытых и закрытых системах теплоснабжения при качественном регулировании отпуска теплоты следует определять по формуле:

На горячее водоснабжение - student2.ru (46)

Коэффициент k3, учитывающий долю среднечасового расхода воды на горячее водоснабжение при регулировании по нагрузке отопления, следует принимать по таблице №2 :

Таблица №2. Значения коэффициента

k

Система теплоснабжения Значение коэффициента k3
открытая с тепловым потоком, МВт:  
100 и более 0.6
менее 100 0.8
закрытая с тепловым потоком, МВт:  
100 и более 1.0
менее 100 1.2

ПРИМЕЧАНИЕ. При регулировании по совмещенной нагрузке отопления и горячего водоснабжения коэффициент k3 принимается равным нулю.

Для закрытых систем теплоснабжения при регулировании по нагрузке отопления и тепловом потоке менее 100 МВт при наличии баков аккумуляторов у потребителей коэффициент k3 следует принимать равным единице.

Суммарный расчетный расход воды для потребителей при На горячее водоснабжение - student2.ru при отсутствии баков аккумуляторов, а также с тепловым потоком 10 МВт и менее, следует определять по формуле:

На горячее водоснабжение - student2.ru (47)

Расчетный расход воды, кг/ч, в двухтрубных водяных тепловых сетях в неотопительный период, На горячее водоснабжение - student2.ru , следует определять по формуле:

На горячее водоснабжение - student2.ru (48)

где На горячее водоснабжение - student2.ru - коэффициент, учитывающий изменение расхода воды на горячее водоснабжение в неотопительный период (определяется по приложению №7).

Расход воды в обратном трубопроводе двухтрубных водяных тепловых сетей открытых систем теплоснабжения принимается равным в размере 10 % от расчетного расхода воды, определенного по формуле (41). Расчетный расход воды для определения диаметров подающих и циркуляционных трубопроводов систем горячего водоснабжения следует определять в соответствии со СНиП 2.04.01-85.

Вопрос

Основной задачей гидравлического расчета является определение диаметров трубопроводов, а также потерь давления на участках тепловых сетей. По результатам гидравлических расчетов разрабатывают гидравлические режимы систем теплоснабжения, подбирают сетевые и подпиточные насосы, авторегуляторы, дроссельные устройства, оборудование тепловых пунктов. Гидравлический расчет выполняется, как правило, в 2 этапа:

Наши рекомендации