Способ получения водостойкого вяжущего
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Номер заявки: 97111911/03 Дата подачи заявки:08.07.1997 Дата публикации: 27.09.1998 Заявитель(и): Петербургский государственный университет путей сообщения Автор(ы): Сватовская Л.Б.; Латутова М.Н.; Макарова О.Ю Патентообладатель(и): Петербургский государственный университет путей сообщения | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Описание изобретения: Изобретение относится к области строительных материалов, к производству отделочных работ. Известны способы получения водостойкого вяжущего на основе фосфатов алюминия, получаемые при взаимодействии гидроксида алюминия с фосфорной кислотой в присутствии d-металлов, например FeO и CuO, или на основе смеси из гидроксида алюминия ГОСТ 11841-76, остаток на сите N 008 - 60%, измельченного в виброизмельчителе до остатка на сите N008 в 2 - 5% и различных пигментов. При этом наблюдается изменение фазообразования, приводящее к образованию более конденсированных фосфатов и повышению прочности и водостойкости материалов (Латутова М. Н., Сватовская Л.Б., Лукина Л.Г. и др. Особенности получения вяжущих на основе фосфатов алюминия - Л., Стройиздат, журнал "Цемент" N6, 1992). Однако вяжущие после двухдневного водонасыщения теряют прочность при сжатии почти в два раза. Наиболее близким по технической сущности и достигаемому положительному эффекту является способ получения водостойкого вяжущего (Сватовская Л.Б., Латутова М.Н., Головина О.А. Управление свойствами фосфатных смесей с учетом модели строения твердого тела. -Л., Стройиздат, журнал "Цемент" N5, 1990), выбранный за прототип, включающий затворение ортофосфорной кислотой гидроксида алюминия (66%) и оксида железа (II) (14%), с последующим затвердеванием на воздухе. Недостатком этого способа является потеря вяжущим прочности при сжатии после двухдневного водонасыщения почти в два раза. Задача, на решение которой направлено заявляемое изобретение, состоит в способе получения фосфатных вяжущих, отличающихся повышенной водостойкостью. Поставленная задача в предлагаемом способе решается путем смешения и затворения ортофосфорной кислотой смеси, состоящей из гидроксида алюминия, остаток на сите N 008 60-61%, мелкодисперсного гидроксида алюминия, оксида железа (II) с последующим затвердеванием в течение трех суток на воздухе и дополнительным выдерживанием при отрицательной температуре в интервале (-15) - (-17)oC. Новым по сравнению с прототипом является твердение фосфатных материалов с трехсуточного возраста (воздушного твердения) на морозе при (-15) - (-17)oC для повышения водостойкости. Пример конкретного выполнения. Смесь, состоящую из гидроксида алюминия ГОСТ 11841-76, остаток на сите N 008 60-61%, гидроксида алюминия мелкодисперсного ТУ 6-09-37-14-74, остаток на сите N 008 5-7%, оксида железа (II) ТУ 6-09-14-04-76, перемешивают, затворяют ортофосфорной кислотой плотностью p=1,37-1,49. Через трое суток твердения на воздухе фосфатный материал выдерживают на морозе при отрицательной температуре в интервале (-15) - (-17)oC. В таблице представлены значения прочности при сжатии образцов, твердеющих на воздухе и после двухдневного водонасыщения, а также твердеющих на морозе с 3 и 7 до 28 суток и после двухдневного водонасыщения. Анализ данных таблицы показывает, что образцы воздушного твердения теряют прочность при сжатии после двухдневного водонасыщения на 40 - 70%, прочность образцов, твердеющих на морозе с 3 до 28 суток после двухдневного водонасыщения, падает лишь на 8-20%. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Описание изобретения к патенту: Изобретение используется в строительстве в качестве водостойкого покрытия для древесных плит, при восстановлении поврежденных участков элементов деревянных конструкций, а также как плитный материал. Плитный материал изготавливается методом плоского прессования частиц наполнителя, смешанных со связующим, при температуре 18-20°С и давлении 3 МПа. Для снижения вязкости эпоксидную смолу ЭД-20 разогревают до 50-60°С, затем в нее вводят отвердитель и пластификатор. Полученное связующее тщательно перемешивают и добавляют в него смесь древесных опилок с резиновой крошкой. Приготовленную массу укладывают в металлические формы и прессуют в течение суток. Затем для ускорения процесса твердения композиции производят термообработку при температуре 80°С в течение 2 часов. Для использования композиции в качестве покрытия приготовленная таким же образом смесь укладывается на защищаемую поверхность, и производится прессование при тех же технологических параметрах, что и при получении плитного материала. Схема получения эпоксидно-древесной композиции представлена на фиг.1. За аналог принималась эпоксидно-древесная композиция для покрытия древесины (для выравнивания поверхностей) (патент RU 2028344, С1, от 09.02.1995). Состав композиции в мас.ч.: 10-20 эпоксидной диановой смолы ЭД-20, 10-20 дибутилфталата в качестве пластификатора, 10-15 полиэтиленполиамина (ПЭПА) в качестве аминного отвердителя, 30-70 графита и 30-70 талька в качестве наполнителей. Задачей данного изобретения является защита ДСП от воздействия воды, препятствование выделению свободного фенола, а также замена ДСП в конструкциях. Данная техническая задача достигается тем, что в качестве связующего использовали эпоксидно-диановую смолу марки ЭД-20 (ГОСТ 10587-84), а в качестве наполнителя использовали сосновые опилки, резиновую крошку - отходы производства резинотехнических изделий завода «АРТИ» г.Тамбов, пластификатора - маточную смолу эпоксидную (МСЭ-I марки Б) - отходы производства эпоксидных смол. Отверждение производили при помощи полиэтиленполиамина (ПЭПА) (ТУ 2413-357-00203447-99) при комнатной температуре и атмосферном давлении. Резиновую крошку получают дроблением утилизируемых резиновых изделий (использованных автомобильных шин, покрышек, производственного брака (уплотнителей, масок противогазов, прокладок)). Гранулометрический состав резиновой крошки определялся как остаток на ситах размером, мм, в %: 2,5:1,25:0,63:0,315:0,14=50:16:24:8:2. МСЭ-I (СТП 6-21-700-1.24-93) является технологическими промышленными отходами и представляет собой раствор смеси смол и продуктов дегидрохлорирования в толуол-бутаноле или толуоле, выделенных из маточника от производства эпоксидных смол: ЭД-20, Э-40, Э-05к, Э-23. Маточная смола МСЭ-I должна соответствовать требованиям и нормам, указанным в таблице 1.
Оценку влияния степени наполнения и пластификации на физико-механические свойства эпоксидно-древесной композиции проводили по результатам кратковременных испытаний на сжатие, поперечный изгиб и водостойкость при комнатной (20°С) температуре. Расчет состава композиций выполняли в частях по массе, где общую массу композиции принимали за 100. Результаты испытаний представлены в таблицах 2, 3 и на фиг.2. Исследование механических и физических характеристик композитного материала в зависимости от количества вводимого пластификатора МСЭ было проведено на составе, содержащем 50 мас.ч. древесного наполнителя (сосновых опилок) от общей массы смеси. С введением пластификатора происходит снижение вязкости связующего и улучшаются условия переработки состава. При 15 мас.ч. пластификатора материал имеет наибольшую плотность (1) и прочность при изгибе (2) и сжатии (3), а также наименьшее водопоглощение (за 2 часа (4), за 24 часа (5)) и набухание по толщине (за 2 часа (6), за 24 часа (7)) (фиг.2). Дальнейшее увеличение количества пластификатора приводит к ухудшению механических и физических характеристик композиции. Влияние степени наполнения на физико-механические свойства композиции оценивали при содержании МСЭ 15 мас.ч. на составе, содержащем в качестве наполнителя сосновые опилки и асбофрикционные отходы (табл.2).
Наилучшие показатели имеет композиция при количестве наполнителя 60 мас.ч., поэтому оптимальное соотношение сосновых опилок и резиновой крошки для изобретения определено на составе, содержащем 60% наполнителя (табл.3).
Проведенные исследования показали, что использование в составе эпоксидной композиции сосновых опилок и резиновой крошки в качестве наполнителя позволяет заменить традиционные наполнители, специально выпускаемые промышленностью, без ухудшения эксплуатационных свойств материала. Из приведенных данных видно, что наилучшим комплексом физико-механических показателей обладает состав, содержащий 15 ч. по массе пластификатора МСЭ и 60 ч. по массе наполнителя при соотношении по массе сосновых опилок и резиновой крошки 1:2. В связи с тем, что изобретение используется в качестве покрытия для ДСП и при восстановлении поврежденных участков элементов деревянных конструкций, для оптимального состава была исследована адгезия к древесно-стружечным плитам и древесине, а также влияние воды на прочность композиции. Для древесно-стружечных плит, покрытых данным составом, было исследовано падение прочности при изгибе, набухание и водопоглощение за 24 часа замачивания (табл.4)
При исследовании адгезии к ДСП разрушение образцов происходило по древесно-стружечной плите, а к древесине - по клеевому шву. Как видно из таблицы 4, применение покрытия для ДСП позволяет существенно увеличить водостойкость материала даже при минимальной толщине покрытия по сравнению с непокрытой древесно-стружечной плитой. Так, остаточная прочность у ДСП с покрытием после 24 часов замачивания выше в 2 раза, а водопоглощение и набухание ниже в 3 и 5 раз соответственно. Результаты показывают, что покрытие выполняет роль обоймы, ограничивая доступ воды и набухание плиты, что повышает несущую способность конструкции. Еще одна функция покрытия заключается в том, что оно препятствует выделению свободного фенола из древесно-стружечной плиты, что снижает ее экологическую опасность. Авторами предлагается следующий состав эпоксидно-древесной композиции, ч. по массе: - эпоксидная смола ЭД-20 - 100; - отвердитель ПЭПА - 10; - пластификатор (маточная смола эпоксидная МСЭ-1) - 15; - наполнитель (сосновые опилки) - 62,5; - наполнитель (резиновая крошка) - 125. Предлагаемая эпоксидно-древесная композиция обладает: - хорошими физико-техническими характеристиками; - экологической безопасностью; - позволяет применять отходы производства. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Использованая литература:
1. Куликов В.А., Чубов А. В. Технология клееных материалов и плит. – М.: Лесная пром-сть, 1984.-338с.
2. Шварцман Г.М., Щедро Д.А. производство древесностружечных плит. – М.: Лесная промышленность, 1987. -319 с.
3. http://www.freepatent.ru/patents/2140351
4. http://bankpatentov.ru/node/464248
5. http://bankpatentov.ru/node/194801