Линейная модель многоотраслевой экономики

В. В. Леонтьевым на основании анализа экономики США и период перед второй мировой войной был установлен важный факт: в течение длительного времени величины Линейная модель многоотраслевой экономики - student2.ru меняются очень слабо и могут рассматриваться как постоянные числа. Это явление становится понятным в свете того, что технология производства остается на одном и том же уровне довольно длительное время, и, следовательно, объем потребления j-й отраслью продукции i-й отрасли при производстве своей продукции объема Линейная модель многоотраслевой экономики - student2.ru есть технологическая константа.

В силу указанного факта можно сделать следующее допущение: для производства продукции j-й отрасли объема Линейная модель многоотраслевой экономики - student2.ru нужно использовать продукцию i-й отрасли объема Линейная модель многоотраслевой экономики - student2.ru , где Линейная модель многоотраслевой экономики - student2.ru ‒ постоянное число. При таком допущении технология производства принимается линейной, а само это допущение называется гипотезой линейности. При этом числа Линейная модель многоотраслевой экономики - student2.ru называются коэффициентами прямых затрат. Согласно гипотезе линейности, имеем:

Линейная модель многоотраслевой экономики - student2.ru (2)

Тогда уравнения (1) можно переписать в виде системы уравнений:

Линейная модель многоотраслевой экономики - student2.ru (3)

Введем в рассмотрение векторы ‒ столбцы объемов произведенной продукции (вектор валового выпуска), объемов продукции конечного потребления (вектор конечного потребления) и матрицу коэффициентов прямых затрат:

Линейная модель многоотраслевой экономики - student2.ru , Линейная модель многоотраслевой экономики - student2.ru , (4)

Линейная модель многоотраслевой экономики - student2.ru

Тогда система уравнений (3) в матричной форме имеет вид:

Линейная модель многоотраслевой экономики - student2.ru . (5)

Обычно это соотношение называют уравнением линейного межотраслевого баланса. Вместе с описанием матричного представления (4) это уравнение носит название модели Леонтьева.

Уравнение межотраслевого баланса можно использовать в двух целях. В первом, наиболее простом случае, когда известен вектор валового выпуска Линейная модель многоотраслевой экономики - student2.ru , требуется рассчитать вектор конечного потребления Линейная модель многоотраслевой экономики - student2.ru ‒ подобная задача была рассмотрена выше.

Во втором случае уравнение межотраслевого баланса используется для целей планирования со следующей формулировкой задачи: для периода времени T (например, год) известен вектор конечного потребления у и требуется определить вектор Линейная модель многоотраслевой экономики - student2.ru валового выпуска. Здесь необходимо решать систему линейных уравнений (5) с известной матрицей A и заданным вектором Линейная модель многоотраслевой экономики - student2.ru . В дальнейшем мы будем иметь дело именно с такой задачей.

Между тем система (5) имеет ряд особенностей, вытекающих из прикладного характера данной задачи; прежде всего все элементы матрицы A и векторов Линейная модель многоотраслевой экономики - student2.ru и Линейная модель многоотраслевой экономики - student2.ru должны быть неот­рицательными.

Пример:Таблица 1 содержит данные баланса трех отрас­лей промышленности за некоторый период времени. Требуется найти объем валового выпуска каждого вида продукции, если конечное потребление по отраслям увеличить соответственно до 60, 70 и 30 условных денежных единиц.

Таблица 1

№ п/п Отрасль Потребление Конечный продукт Валовой выпуск
Добыча и переработка углеводородов
Энергетика
Машиностроение

Решение: Выпишем векторы валового выпуска и конеч­ного потребления и матрицу коэффициентов прямых затрат. Согласно формулам (2) и (3), имеем

Линейная модель многоотраслевой экономики - student2.ru

Матрица A удовлетворяет обоим критериям продуктивности. В случае заданного увеличения конечного потребления новый вектор конечного продукта будет иметь вид

Линейная модель многоотраслевой экономики - student2.ru (6)

Требуется найти новый вектор валового выпуска Линейная модель многоотраслевой экономики - student2.ru *, удов­летворяющий соотношениям баланса в предположении, что матрица A не изменяется. В таком случае компоненты x1, x2, х3 неизвестного вектора Линейная модель многоотраслевой экономики - student2.ru * находятся из системы уравнений, которая согласно (3) имеет в данном случае вид

Линейная модель многоотраслевой экономики - student2.ru

В матричной форме эта система выглядит следующим об­разом:

Линейная модель многоотраслевой экономики - student2.ru (7)

или

Линейная модель многоотраслевой экономики - student2.ru (8)

где матрица (Е ‒ A) имеет вид

Линейная модель многоотраслевой экономики - student2.ru

Решение системы линейных уравнений (8) при заданном векторе правой части (6) (например, методом Гаусса) да­ет новый вектор Линейная модель многоотраслевой экономики - student2.ru * как решение системы уравнений баланса (7):

Линейная модель многоотраслевой экономики - student2.ru

Таким образом, для того чтобы обеспечить заданное уве­личение компонент вектора конечного продукта, необходимо увеличить соответствующие валовые выпуски: добычу и пе­реработку углеводородов на 52,2%, уровень энергетики ‒ на 35,8% и выпуск продукции машиностроения ‒ на 85% по срав­нению с исходными величинами, указанными в табл. 1.

Векторы (основные понятия и определения).

Все величины делятся на скалярные и векторные.

Скалярные величины характеризуются числовым значением (вес товара, стоимость и т.д.)

Векторные величины характеризуются числовым значением и направлением.

Вектором называется направленный отрезок, на котором указаны начало, конец и направления.

Линейная модель многоотраслевой экономики - student2.ru

Обозначается Линейная модель многоотраслевой экономики - student2.ru или Линейная модель многоотраслевой экономики - student2.ru , ½ Линейная модель многоотраслевой экономики - student2.ru ½‒ длина вектора.

Векторы называются коллинеарными, если их направление совпадает или противоположно.

Линейная модель многоотраслевой экономики - student2.ru а) б) Линейная модель многоотраслевой экономики - student2.ru

Линейная модель многоотраслевой экономики - student2.ru ‒ коллинеарные.

Наши рекомендации