Построение функции полезности

Однако уверены ли мы в том, что вообще существует какой-либо способ приписывания товарным наборам порядковых полезностей? Допустим, имеется некое ранжирование предпочтений. Всегда ли можно найти функцию полезности, располагающую товарные наборы в том же порядке, в каком располагаются эти предпочтения? Существует ли функция полезности, описывающая любое рациональное ранжирование предпочтений?

Не все виды предпочтений можно представить с помощью функции полезности. Предположим, например, что предпочтения некоего индивида нетранзитивны, так что AfBfCfA. Тогда функция полезности, соответствующая этим предпочтениям, должна была бы состоять из чисел u(A), u(B) и u(C) таких, что u(A) > u(B) > u(C) > u(A). Но это невозможно.

Если, однако, исключить из рассмотрения аномальные случаи вроде нетранзитивных предпочтений, то окажется, что практически всегда можно найти некую функцию полезности, которая бы представляла данные предпочтения. Поясним построение функции полезности наглядными примерами, рассмотрев один из них здесь, а другой — в гл. 14.

Допустим, что нам дана карта кривых безразличия, такая, как на рис. 4.2. Мы знаем, что функция полезности есть способ обозначения кривых безразличия, при котором более высоким кривым безразличия ставятся в соответствие бóльшие числа. Как это можно сделать?

Построение функции полезности - student2.ru

Рис. 4.2 Построение функции полезности на основе кривых безразличия. Нарисуйте диагональную линию и обозначьте каждую кривую безразличия числом, соответствующим расстоянию от нее до начала координат, измеренному вдоль этой линии.  

Один из простых способов — провести диагональ, как показано на рисунке, и обозначить каждую кривую безразличия числом, соответствующим ее расстоянию от начала координат, измеренному вдоль этой диагонали.

Откуда мы знаем, что в результате этого получим функцию полезности? Нетрудно заметить, что если предпочтения монотонны, то луч, проходящий через начало координат, должен пересечь каждую кривую безразличия в точности один раз. Таким образом, каждый набор благ получает свое обозначение, и наборы, находящиеся на более высоких кривых безразличия, обозначаются бóльшими числами, а только это и требуется, чтобы построить функцию полезности.

Это дает нам один из способов обозначения кривых безразличия по крайней мере для случая монотонных предпочтений. Данный способ не всегда будет самым подходящим для любого заданного случая, но он показывает достаточно общий характер идеи, заложенной в функции порядковой полезности: "разумные" предпочтения почти любого вида можно представить с помощью функции полезности.

4.3. Некоторые примеры функций полезности

В гл. 3 мы рассмотрели несколько примеров предпочтений и представляющих их кривых безразличия. Эти предпочтения можно представить также с помощью функций полезности. Если дана функция полезности u(x1, x2), нарисовать соответствующие кривые безразличия сравнительно несложно: надо нанести на график все точки (x1, x2), для которых u(x1, x2) постоянна. В математике множество всех (x1, x2), для которых u(x1, x2) постоянна, называется упорядоченным множеством. Для каждого другого значения константы мы получаем другую кривую безразличия.

ПРИМЕР: Кривые безразличия,

получаемые на основе функции полезности

Предположим, что функция полезности имеет вид: u(x1, x2) = x1x2. Как выглядят тогда кривые безразличия? Нам известно, что типичная кривая безразличия есть просто множество всех x1 и x2, таких, что k = x1x2 для некой константы k. Выразив x2 как функцию от x1, мы видим, что типичной кривой безразличия в данном случае будет соответствовать формула:

Построение функции полезности - student2.ru

Эта кривая изображена на рис. 4.3 для k = 1, 2, 3...

Построение функции полезности - student2.ru

  Кривые безразличия. Кривые безразличия k = x1x2 для любых значений k. Рис. 4.3

Рассмотрим еще один пример. Допустим, нам задана функция полезности вида Построение функции полезности - student2.ru Как выглядят ее кривые безразличия? Согласно стандартным правилам алгебры:

Построение функции полезности - student2.ru

Иными словами, функция полезности v(x1, x2) есть просто квадрат функции полезности u(x1, x2). Поскольку u(x1, x2) не может быть отрицательной величиной, отсюда следует, что v(x1, x2) является монотонным преобразованием исходной функции полезности u(x1, x2). Это означает, что функции полезности Построение функции полезности - student2.ru должны соответствовать кривые безразличия в точности такой же формы, как у представленных на рис.4.3. Обозначения кривых безразличия будут другими — обозначения 1, 2, 3 теперь станут обозначениями 1, 4, 9, ..., но множество наборов, имеющее полезность v(x1, x2) = 9, в точности такое же, что и множество наборов, имеющее полезность v(x1, x2) = 3. Следовательно, v(x1, x2) описывает в точности те же предпочтения, что и u(x1, x2), поскольку она ранжирует все наборы таким же образом.

Идти в обратном направлении — находить функцию полезности, представляющую определенные кривые безразличия, — несколько сложнее. Для этого можно прибегнуть к двум способам. Первый способ — математический. Исходя из заданных кривых безразличия мы хотим найти функцию, которая принимала бы постоянные значения вдоль каждой кривой безразличия и приписывала бы бóльшие численные значения более высоким кривым безразличия.

Второй способ — несколько более интуитивный. Исходя из описания предпочтений, мы пытаемся представить себе, что именно стремится максимизировать потребитель — какая комбинация товаров описывает его потребительский выбор. Хотя на данной стадии рассмотрения этот способ может показаться несколько неясным, после обсуждения нескольких примеров его смысл станет понятнее.

Совершенные субституты

Помните пример с красными и синими карандашами? Для потребителя имело значение только общее число карандашей. Таким образом, вполне естественно измерять полезность общим числом карандашей. Поэтому предварительно выберем функцию полезности вида u(x1, x2) = x1 + x2. Подойдет ли она? Достаточно задать себе два вопроса: принимает ли эта функция полезности постоянные значения при перемещении вдоль кривых безразличия? Приписывает ли она более высокие численные значения более предпочитаемым наборам? Поскольку на оба эти вопроса следует дать утвердительный ответ, перед нами — функция полезности.

Разумеется, это не единственная функция полезности, которую мы могли бы использовать в данном случае. Можно было бы также использоватьквадрат числа карандашей. Таким образом, функция полезности Построение функции полезности - student2.ru тоже представляет предпочтения для случая совершенных субститутов, как, впрочем, и любая другая функция, являющаяся монотонным преобразованием функции u(x1, x2).

Что, если потребитель хочет заместить товар 1 товаром 2 в соотношении, отличном от соотношения "один к одному"? Предположим, например, что потребителю потребуются две единицы товара 2, чтобы компенсировать отказ от одной единицы товара 1. Это означает, что товар 1 вдвое ценнее для потребителя, чем товар 2. Функция полезности, следовательно, принимает вид u(x1, x2) = 2x1 + x2. Заметьте, что эта функция полезности дает кривые безразличия с наклоном –2.

Вообще предпочтения в отношении совершенных субститутов можно представить функцией вида

u(x1, x2) = ax1 + bx2.

Здесь a и b — некие положительные числа, измеряющие "ценность" товаров 1 и 2 для потребителя. Обратите внимание на то, что наклон типичной кривой безразличия задан — a/b.

Совершенные комплементы

Это случай левого и правого башмаков. При предпочтениях такого рода потребителя заботит только число имеющихся у него пар обуви, поэтому естественно выбрать число пар обуви в качестве функции полезности. Число имеющихся у вас полных пар обуви есть минимум числа имеющихся у вас правых x1 и левых x2 башмаков. В соответствии с этим функция полезности для совершенных комплементов принимает вид u(x1, x2) = min{x1, x2}.

Чтобы проверить, действительно ли эта функция полезности подходит в данном случае, выберем, скажем, товарный набор (10, 10). Добавив еще одну единицу товара 1, получаем набор (11, 10), потребляя который, мы должны были бы остаться на той же самой кривой безразличия. Так ли это? Да, поскольку min{10, 10} = min{11, 10} = 10.

Итак, u(x1, x2) = min{x1, x2} — функция полезности, с помощью которой можно описать совершенные комплементы. Как обычно, для этого подойдет и любая функция, являющаяся монотонным преобразованием данной .

Что можно сказать о случае, когда потребитель хочет потреблять товары не в пропорции "один к одному"? Например, как насчет потребителя, всегда потребляющего 2 ложки сахара с чашкой чая? Если x1 — число имеющихся чашек чая, а x2 — число имеющихся ложек сахара, то число должным образом чашек подслащенного чая составит Построение функции полезности - student2.ru

Это несколько сложно для понимания, так что немного поразмыслим об этом. Ясно, что если число чашек чая будет больше половины числа ложек сахара, то мы не сможем положить в каждую чашку чая по 2 ложки сахара. В этом случае у нас в итоге окажется только Построение функции полезности - student2.ru чашек должным образом подслащенного чая. (Чтобы убедиться в этом, подставьте вместо x1 и x2 какие-нибудь числа.)

Разумеется, те же самые предпочтения могут быть описаны любой функцией, которая является монотонным преобразованием указанной функции полезности. Например, можно произвести умножение на 2, чтобы избавиться от дроби. В результате этого получим функцию полезности u(x1, x2) = min{2x1, x2}.

Вообще, функция полезности, описывающая предпочтения для случая совершенных комплементов, имеет вид

u(x1, x2) = min{ax1, bx2},

где a и b — положительные числа, показывающие пропорции, в которых потребляются товары.

Квазилинейные предпочтения

Перед нами форма кривых безразличия, с которой мы раньше не сталкивались. Предположим, что кривые безразличия потребителя представляют собой, как на рис. 4.4, вертикальные смещения одной кривой по отношению к другой. Это означает, что все кривые безразличия являются просто вертикально "смещенными" копиями одной и той же кривой безразличия. Отсюда следует, что уравнение кривой безразличия принимает вид x2 = k – v(x1), где k — константа, имеющая для каждой кривой безразличия свои значения. Чем больше значения k, тем выше располагаются кривые безразличия. (Знак "минус" здесь — не более, чем условность; почему он удобен, мы увидим ниже.)

В этой ситуации вполне естественным является ранжирование кривых безразличия по k, или по "высоте" вдоль вертикальной оси. Выразив k и приравняв его к полезности, получаем

u(x1, x2) = k = v(x1) + x2.

В данном случае функция полезности линейна по товару 2, но нелинейна (возможно) по товару 1; отсюда и название квазилинейная, означающее частично линейную полезность. Конкретные примеры квазилинейной функции полезности: Построение функции полезности - student2.ru или u(x1, x2) = lnx1 + x2. Квазилинейные функции полезности не особенно реалистичны, но с ними легко работать, в чем мы убедимся на нескольких примерах, рассматриваемых далее в этой книге.

Предпочтения Кобба — Дугласа

Другая широко используемая функция полезности — функция полезности Кобба — Дугласа:

Построение функции полезности - student2.ru

где c и d — положительные числа, описывающие предпочтения потребителя.

Построение функции полезности - student2.ru

  Квазилинейные предпочтения. Каждая кривая безразличия есть вертикально смещенная копия одной-единственной кривой безразличия. Рис. 4.4

Функция полезности Кобба — Дугласа будет полезна нам при рассмотрении нескольких примеров. Предпочтения, представленные функцией полезности Кобба — Дугласа, в общем виде характеризуются формой кривых безразличия, изображенной на рис. 4.5. На рис.4.5A изображены кривые безразличия для с = 1/2, d = 1/2, на рис.4.5B соответственно для c = 1/5, d = 4/5. Обратите внимание на то, что разные значения параметров c и d обусловливают различие форм кривых безразличия.

Построение функции полезности - student2.ru

A c = 1/2 d = 1/2B c = 1/5 d = 4/5

  Кривые безразличия Кобба — Дугласа. На рис.A показан случай c = 1/2, d = 1/2, а на рис.B — случай c = 1/5, d = 4/5. Рис. 4.5

Кривые безразличия Кобба — Дугласа выглядят в точности так же, как симпатичные выпуклые к началу координат монотонные кривые безразличия, которые в гл.3 мы называли стандартными кривыми безразличия. Предпочтения Кобба — Дугласа дают нам типовой пример таких стандартных с виду кривых безразличия, и, действительно, описывающая их формула — это, пожалуй, простейшее алгебраическое выражение, соответствующее стандартным предпочтениям. Предпочтения Кобба — Дугласа окажутся весьма полезными для представления на алгебраических примерах некоторых экономических идей, которые мы рассмотрим позднее.

Разумеется, те же самые предпочтения могут быть представлены и с помощью функции, являющейся монотонным преобразованием функции полезности Кобба — Дугласа, и пару примеров таких преобразований стоит рассмотреть.

Во-первых, если взять натуральный логарифм полезности, то произведение членов превратится в сумму, так что:

Построение функции полезности - student2.ru

Кривые безразличия для этой функции полезности будут выглядеть совершенно так же, как и для первой функции Кобба — Дугласа, поскольку логарифмирование — это монотонное преобразование. (Краткий обзор натуральных логарифмов вы найдете в математическом приложении в конце книги.)

В качестве второго примера предположим, что вначале у нас была функция Кобба — Дугласа вида

Построение функции полезности - student2.ru

Возведя полезность в степень 1/(c + d), получим:

Построение функции полезности - student2.ru

Определим новый член:

Построение функции полезности - student2.ru

Теперь можно записать нашу функцию полезности как

Построение функции полезности - student2.ru

Это означает, что всегда можно произвести такое монотонное преобразование функции полезности Кобба — Дугласа, при котором сумма показателей степени станет равной 1. Позднее станет ясно, что этот факт может иметь полезную интерпретацию.

Функция полезности Кобба — Дугласа может быть представлена различными способами; следует научиться их распознавать, так как данное семейство предпочтений очень полезно для использования в качестве примеров.

Предельная полезность

Перед нами потребитель, потребляющий некий товарный набор (x1, x2). Как изменится полезность для этого потребителя, если дать ему чуть больше товара 1? Это отношение изменений называется предельной полезностью товара 1. Обозначим ее MU1 и будем представлять ее как отношение

Построение функции полезности - student2.ru

показывающее изменение полезности (DU) в связи с малым изменением количества товара 1 (Dx1). Обратите внимание на то, что количество товара 2 в этих расчетах считается постоянным.

Данным определением подразумевается, что для расчета изменения полезности в связи с малым изменением потребления товара 1 мы можем просто умножить изменение потребления на предельную полезность товара:

DU = MU1Dx1.

Подобным же образом определяется и предельная полезность товара 2:

Построение функции полезности - student2.ru

Обратите внимание на то, что, подсчитывая предельную полезность товара 2, мы сохраняем количество товара 1 постоянным. Можно подсчитать изменение полезности в связи с изменением потребления товара 2 по формуле

DU = MU2Dx2.

Важно понять, что величина предельной полезности зависит от величины полезности. Следовательно, она зависит от конкретного способа, который мы выбираем для измерения полезности. Если бы мы умножили полезность на 2, предельная полезность также оказалась бы умноженной на 2. Мы по-прежнему располагали бы во всех отношениях подходящей функцией полезности, имеющей, однако, просто другой масштаб.

Сказанное означает, что сама по себе предельная полезность не зависит от поведения потребителя. Можем ли мы каким-то образом рассчитать предельную полезность исходя из потребительского выбора? Не можем. Потребительский выбор лишь выявляет информацию о том, как потребитель ранжирует разные товарные наборы. Предельная полезность зависит от конкретной функции полезности, используемой для отображения ранжирования предпочтений, и ее величина не имеет особого значения. Оказывается, однако, как мы увидим далее, предельную полезность можно использовать для подсчета чего-то, что лишено поведенческого содержания.

Предельная полезность и MRS

Функцию полезности u(x1, x2) можно использовать для измерения предельной нормы замещения (MRS), определение которой дано в гл.3. Вспомним, что MRS измеряет наклон кривой безразличия в точке, соответствующей данному товарному набору ; ее можно трактовать как пропорцию, в которой потребитель хотел бы заместить товар 2 малым количеством товара 1.

Эта трактовка дает нам простой способ подсчета MRS. Рассмотрим те изменения потребления каждого товара (Dx1, Dx2), при которых полезность остается постоянной, т.е. те изменения потребления, при которых мы перемещаемся вдоль данной кривой безразличия. В этом случае должно соблюдаться равенство

MU1Dx1 + MU2Dx2 = DU = 0.

Выразив из этого равенства наклон кривой безразличия, получим

Построение функции полезности - student2.ru (4.1)

(Обратите внимание на то, что в левой части уравнения у нас стоит 2 в числителе и 1 в знаменателе, а в правой части уравнения — наоборот. Не перепутайте!)

Алгебраический знак MRS отрицателен: чтобы получить больше товара 1, сохранив при этом ту же самую полезность, вам придется примириться с меньшим потреблением товара 2. Очень утомительно, однако, все время следить за тем, чтобы не потерять этот докучливый знак "минус", поэтому экономисты часто говорят об абсолютной величине MRS, т.е. об MRS как о положительном числе. Мы будем придерживаться этой условности до тех пор, пока из-за этого не возникнет путаницы.

Отметим интересный момент в отношении подсчетов MRS: MRS можно измерить, наблюдая фактическое поведение индивида: мы находим, как описано в гл. 3, ту пропорцию обмена благ, при которой он просто хочет остаться в данной точке кривой безразличия.

Функция полезности и, следовательно, функция предельной полезности определяются не единственным образом. Любое монотонное преобразование какой-либо функции полезности даст еще одну, в равной мере корректную, функцию полезности. Так, например, при умножении полезности на 2, предельная полезность умножается на 2. Таким образом, значение функции предельной полезности зависит от выбора функции полезности, являющегося произвольным. Оно зависит не от одного лишь поведения как такового, а от функции полезности, используемой для описания этого поведения.

Но отношение предельных полезностей дает величину наблюдаемую, а именно предельную норму замещения. Отношение предельных полезностей не зависит от конкретного преобразования выбранной функции полезности. Посмотрите, что произойдет, если умножить полезность на 2. MRS примет вид

Построение функции полезности - student2.ru

"Двойки" просто сокращаются, и MRS остается без изменений.

То же самое происходит в случае любого монотонного преобразования функции полезности. Произвести монотонное преобразование означает просто переобозначить кривые безразличия, а в описанном выше расчете MRS речь идет о движении вдоль данной кривой безразличия. Хотя предельные полезности в ходе монотонных преобразований и изменяются, отношение предельных полезностей не зависит от конкретного способа, избранного для представления предпочтений.

Наши рекомендации