Вредные вещества и методы защиты

Под вредным понимается вещество, которое при контакте с организмом человека вызывает производственные травмы, профессиональные заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами как в процессе контакта с ним, так и в отдаленные сроки жизни настоящего и последующих поколений.

Классификация вредных веществ и общие требования безопасности введены ГОСТ 12.1.007-76 (1999).

Химические вещества в зависимости от их практического использования классифицируются на:

- промышленные яды, используемые в производстве: например, органические растворители (дихлорэтан), топливо (пропан, бутан), красители (анилин);

- ядохимикаты, используемые в сельском хозяйстве: пестициды (гексахлоран), инсектициды (карбофос) и др.;

- лекарственные средства;

- бытовые химикаты, используемые в виде пищевых добавок (уксусная кислота), средства санитарии, личной гигиены, косметики и т.д.;

- биологические растительные и животные яды, которые содержатся в растениях и грибах (аконит, цикута), у животных и насекомых (змей, пчел, скорпионов);

- отравляющие вещества (ОВ): зарин, иприт, фосген и др.

Степень и характер вызываемых веществом нарушений нормальной работы организма зависит от пути попадания в организм, дозы, времени воздействия, концентрации вещества, его растворимости, состояния воспринимающей ткани и организма в целом, атмосферного давления, температуры и других характеристик окружающей среды.

Вредные вещества попадают в организм:

- через органы дыхания (90%);

- желудочно-кишечный тракт (9%);

- через кожный покров (1%).

По характеру воздействияна организм человека вредные вещества подразделяются на:

- общетоксические или наркотические – действующие на центральную нервную систему и вызывающие отравление всего организма (окись углерода, цианистые соединения, свинец, ртуть, бензол, мышьяк и его соединения);

- раздражающие – вызывающие раздражение дыхательного тракта и слизистых оболочек (хлор, аммиак, сернистый газ, фтористый водород, окислы азота, озон, ацетон);

- сенсибилизирующие – повышающие чувствительность организма к химическим веществам, а в производственных условиях действующие как аллергены (формальдегид, растворители и лаки на основе нитро- и нитрозосоединений);

- канцерогенные – вызывающие раковые заболевания (никель и его соединения, амины, окислы хрома, асбест);

- мутагенные – приводящие к изменению наследственной информации (свинец, марганец, радиоактивные вещества);

- влияющие на репродуктивную (детородную) функцию (ртуть, свинец, стирол, радиоактивные вещества).

Основным показателем опасности вещества являются предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны, установленные ГОСТом 12.1.005-88 (1999). Всего нормируется более 1000 веществ.

По ПДК вредные вещества делятся на четыре класса опасности:

класс 1 (вещества чрезвычайно опасные; ПДК меньше 0,1 мг/куб.м):

- пары ртути - 0,01;

- свинец - 0,1.

класс 2(вещества высокоопасные; ПДК 0,1 – 1,0):

- хлор - 0,1;

- серная кислота - 0,1.

класс 3 (вещества умеренно опасные; ПДК 1,1 – 10,0):

- стирол - 30;

- ацетальдегид - 5.

класс 4 (вещества малоопасные; ПДК более 10,0):

- аммиак - 20;

- этиловый спирт - 1000.

Класс опасности вредных веществ устанавливается в зависимости от норм следующих показателей:

- ПДК;

- средняя смертельная доза при введении в желудок, мг/кг;

- средняя смертельная доза при нанесении на кожу, мг/кг;

- средняя смертельная концентрация в воздухе, мг/куб.м;

- коэффициент возможности ингаляционного отравления;

- зона острого и зона хронического действия.

На предприятиях, производственная деятельность которых связана с вредными веществами, должны быть разработаны нормативно-технические документы по безопасности труда при производстве, применении и хранении вредных веществ.

Снижение уровня воздействия на работающих вредных веществ и их полное устранение достигается путем проведения мероприятий:

- организационно-технических (внедрение непрерывных технологий; автоматический контроль процессов и операций; комплексная механизация производственных процессов; дистанционное управление; герметизация оборудования; замена опасных технологических процессов и операций на менее опасные и безопасные; специальная подготовка и инструктаж обслуживающего персонала);

- санитарно-технических (оборудование рабочих мест местной вытяжной вентиляцией или переносными местными отсосами; закрытие оборудования пыленепроницаемыми кожухами; замена вредных веществ в производстве на менее вредные; выпуск конечных продуктов в непылящих формах);

- лечебно-профилактических (разработка медицинских противопоказаний для работы с вредными веществами, инструкций по оказанию доврачебной помощи пострадавшим при отравлении; проведение периодических медицинских осмотров, дыхательной гимнастики, щелочных ингаляций; обеспечение лечебно-профилактическим питанием и др.).

Особое внимание уделяется применению средств индивидуальной защиты, прежде всего для защиты органов дыхания (фильтрующие и изолирующие противогазы, респираторы, защитные очки, специальная одежда).

Ионизирующие излучения

Ионизирующее излучение – это электромагнитное излучение, которое создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы различных знаков.

Ионизирующее излучение вызывает в организме цепочку обратимых и необратимых изменений. В результате нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, несвойственные организму. Это приводит к нарушению деятельности отдельных функций и систем организма.

Источники ионизирующего излучения:

- в результате радиационной аварии;

- от природных источников излучения;

- при медицинском облучении;

- в условиях нормальной эксплуатации техногенных источников излучения.

Виды излучения:

- корпускулярное излучение (альфа-частицы - поток ядер атомов гелия; бета-частицы - поток электронов или позитронов; нейтроны; протоны).

Корпускулярное излучение имеет большую ионизирующую способность и малую проникающую способность. Оно обладают массой (m) и энергией (Е) до 20 МЭВ.

- фотонное излучение (гамма-кванты; рентгеновское излучение; тормозное излучение).

Фотонное излучение имеет низкую ионизирующую способность и большую проникающую способность. Оно обладает энергией (Е) до 100 кЭВ.

По характеру воздействия на органы человека ионизирующее излучение делится на три группы:

1 – поражающее до костного мозга;

2 – поражающее внутренние физиологические органы;

3 – поражающее кожный покров.

При однократном равномерном гамма - облучении всего тела и поглощенной дозе выше 0,25 Гр развиваются острые поражения:

- при дозе 0,25…0,5 Гр могут наблюдаться временные изменения в крови, которые быстро нормализуются;

- при дозе 1,5…2,0 Гр наблюдается легкая форма острой лучевой болезни;

- при дозе 4,0…6,0 Гр развивается тяжелая форма лучевой болезни;

- при дозах, превышающих 6,0 Гр, развивается крайне тяжелая форма лучевой болезни, которая почти в 100% случаев заканчивается смертью вследствие кровоизлияния и инфекционных заболеваний.

Основными показателями ионизирующих излучений являются:

1. Активность (А) – мера радиоактивности какого-либо количества радионуклида, находящегося в данном энергетическом состоянии в данный момент времени:

Вредные вещества и методы защиты - student2.ru ,

где dN – ожидаемое число спонтанных ядерных превращений из данного энергетического состояния, происходящих за промежуток времени dt. Единицей активности является беккерель (Бк), равный одному распаду в секунду.

2. Доза поглощения (D) – величина энергии ионизирующего излучения, переданная веществу:

Вредные вещества и методы защиты - student2.ru ,

где de – средняя энергия, переданная ионизирующим излучением веществу, находящемуся в элементарном объеме, а dm – масса вещества в этом объеме. Единицей измерения является Грэй (Гр). 1Гр = Дж/кг.

3. Доза эквивалентная (Н) – поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения, W:

Вредные вещества и методы защиты - student2.ru ,

где W – взвешивающий коэффициент для излучения, Dт – средняя поглощенная доза в органе или ткани. Единицей эквивалентной дозы является зиверт (Зв), равный одному грэю на взвешивающий коэффициент для вида излучения. Внесистемная единица – бэр. 1 Зв = 100 бэр.

Гигиеническая регламентация ионизирующего излучения осуществляется Нормами радиационной безопасности НРБ-99, Гигиеническими нормативами ГН 2.6.1.799-99.

Основные дозовые пределы облучения и допустимые уровни устанавливаются для следующих категорий облучаемых лиц:

- группа А – персонал – лица, работающие с техногенными источниками;

- группа Б – находящиеся по условиям работы в сфере их воздействия;

- все население, включая лиц из персонала, вне сферы и условий их производственной деятельности.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) – 1000 мЗв, а для населения за период жизни (70 лет) – 70 мЗв. При проведении профилактических медицинских рентгенологических исследований и научных исследований практически здоровых лиц годовая эффективная доза облучения не должна превышать 1 мЗв.

Радиационная безопасность на объекте и вокруг него обеспечивается за счет:

- качества проекта радиационного объекта;

- обоснованного выбора площадки для размещения радиационного объекта;

- физической защиты источников облучения;

- наличия системы радиационного контроля;

- планирования и проведения мероприятий по обеспечению радиационной безопасности персонала и населения при нормальной работе объекта, его реконструкции и выводе из эксплуатации.

Электромагнитные поля

В производственных условиях на работающего оказывает воздействие широкий спектр электромагнитного излучения. В зависимости от диапазона длин волн различают:

- электромагнитное излучение радиочастот;

- инфракрасное излучение;

- видимую область;

- ультрафиолетовое излучение;

- лазерное излучение.

К ЭМП промышленной частотыотносятся линии электропередач напряжением до 1150 кВ, открытые распределительные устройства, включающие коммутационные аппараты, устройства защиты и автоматики, измерительные приборы. Они являются источниками электрических и магнитных полей промышленной частоты (50 Гц). Длительное действие таких полей приводит к головной боли, расстройствам сна, снижению памяти, апатии.

Нормирование ЭМП промышленной частоты осуществляют по предельно допустимым уровням напряженности электрического и магнитного полей частотой 50 Гц в зависимости от времени пребывания в нем и регламентируются «Санитарными нормами и правилами выполнения работ в условиях воздействия электрических полей промышленной частоты» СН 5802-91 и ГОСТ 12.1.002-84. (1999).

Пребывание в ЭП напряженностью до 5 кВ/м включительно допускается в течение всего рабочего дня. Допустимое время (ч) пребывания в ЭП напряженностью 5…20 кВ/м:

Вредные вещества и методы защиты - student2.ru ,

где Е – напряженность воздействующего ЭП в контролируемой зоне, кВ/м.

Допустимое время пребывания в ЭП может быть реализовано одноразово или дробно в течение рабочего дня.

Инфракрасное излучение (ИК)– часть электромагнитного спектра с длиной волны 780 нм …1000 мкм, энергия которого при поглощении в веществе вызывает тепловой эффект. Наиболее поражаемые у человека органы – кожный покров и органы зрения. ИК-излучение воздействует в частности на обменные процессы в миокарде, водно-электролитный баланс в организме, на состояние верхних дыхательных путей. Нормирование ИК-излучения осуществляется в соответствии с ГОСТ 12.1.005-88 (1999) и Санитарными правилами и нормами СН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений».

Видимое (световое) излучение– диапазон электромагнитных колебаний 780…400 нм. Излучение видимого диапазона при достаточных уровнях энергии также может представлять опасность для кожных покровов и органа зрения. Пульсации яркого света оказывают влияние на состояние зрительных функций, нервной системы, общую работоспособность. Оптическое излучение видимого диапазона при избыточной плотности может приводить к истощению механизмов регуляции обменных процессов, особенно к изменениям в сердечной мышце с развитием дистрофии миокарда и атеросклероза.

Ультрафиолетовое излучение (УФИ)– спектр электромагнитных колебаний с длиной волны 200…400 нм. УФИ, составляющее приблизительно 5% плотности потока солнечного излучения, - жизненно необходимый фактор, оказывающий благотворное стимулирующее действие на организм. Под воздействием УФИ оптимальной плотности наблюдали более интенсивное выведение марганца, ртути, свинца; оптимальные дозы УФИ активизируют деятельность сердца, обмен веществ, улучшают кроветворение. УФИ искусственных источников могут стать причиной острых и хронических профессиональных поражений. Наиболее уязвимы глаза. Нередко наблюдается эритема кожи лица, век. Длительное воздействие УФ-лучей приводит к «старению» кожи, атрофии эпидермиса, возможно развитие злокачественных новообразований. Гигиеническое нормирование УФИ в производственных помещениях осуществляется по СН 4557-88.

Лазерное излучение (ЛИ)– представляет собой особый вид электромагнитного излучения, генерируемого в диапазоне длин волн 0,1…1000 мкм. Отличие ЛИ от других видов излучения заключается в монохроматичности, когерентности и высокой степени направленности. При оценке биологического действия следует различать прямое, отраженное и рассеянное ЛИ. Эффекты воздействия определяются механизмом взаимодействия ЛИ с тканями (тепловой, фотохимический, ударно-акустический и др.) и зависят от длины волны излучения, длительности импульса, частоты следования импульсов, площади облучаемого участка, а также от биологических и физико-химических особенностей облучаемых тканей и органов. Повреждения могут быть различными: от покраснения до поверхностного обугливания и образования глубоких дефектов кожи. При воздействии ЛИ в непрерывном режиме преобладают в основном тепловые эффекты, следствием которых является коагуляция (свертывание) белка, а при больших мощностях – испарение биоткани. Гигиеническая регламентация ЛИ производится по Санитарным нормам и правилам устройства и эксплуатации лазеров – СН 5804-91.

Электрический ток

Электротравматизм по сравнению с другими видами производственного травматизма составляет небольшой процент, однако по числу травм с тяжелым, и особенно с летальным, исходом занимает одно из первых мест.

Проходя через организм человека, электроток производит термическое, электролитическое, механическое и биологическое действия. Термическое воздействие характеризуется нагревом кожи, тканей вплоть до ожогов. Электролитическое воздействие заключается в электролитическом разложении жидкостей, в том числе и крови. Биологическое действие электрического тока проявляется в нарушении биологических процессов, протекающих в организме человека, и сопровождается разрушением и возбуждением тканей и судорожным сокращением мышц. Механическое действие приводит к разрыву ткани, а световое – к поражению глаз.

Различают два вида поражения организма электрическим током: электрические травмы и электрические удары.

Электрические травмы – это местные поражения тканей и органов. К ним относятся электрические ожоги, электрометаллизация кожи, механические повреждения в результате непроизвольных судорожных сокращений мышц при протекании тока, а также электроофтальмия – воспаление глаз в результате воздействия ультрафиолетовых лучей электрической дуги.

Электрический удар представляет собой возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся непроизвольным сокращением мышц.

Различают четыре степени электрических ударов:

I – судорожное сокращение мышц без потери сознания;

II – судорожное сокращение мышц с потерей сознания, но с сохранением дыхания и работы сердца;

III – потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе);

IV – клиническая смерть.

Характер и последствия поражения человека электрическим током зависят от ряда факторов, в том числе и от электрического сопротивления тела человека, величины и длительности протекания через него электрического тока, рода и частоты тока, схемы включения человека в электрическую цепь, состояния окружающей среды и индивидуальных особенностей организма.

Сила тока, проходящего через тело человека, является главным фактором, от которого зависит исход поражения. Человек начинает ощущать проходящий через него ток промышленной частоты 50 Гц относительно малого значения 0,5…1,5 мА. Этот ток называется пороговым ощутимым током. Ток силой 10…15 мА вызывает судороги мышц, которые человек не в состоянии преодолеть, т.е. он не может разжать руку, которой касается токоведущей части. Такой ток называется пороговым неотпускающим.

При силе тока 20…25 мА у человека происходит судорожное сокращение мышц грудной клетки, затрудняется и даже прекращается дыхание, что может привести к смерти вследствие прекращения работы легких.

Ток силой 100 мА является смертельно опасным, так как он в этом случае оказывает влияние на мышцы сердца, вызывая его остановку или фибрилляцию (быстрые хаотичные и разновременные сокращения волокон сердечной мышцы), при которой сердце перестает работать.

Применительно к сетям переменного тока включение человека в электрическую сеть может быть двухфазным и однофазным.

Двухфазное включение – прикосновение одновременно к двум фазам, как правило, более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение (поражающий ток) – линейное.

Однофазное включение – возникает значительно чаще, но менее опасно, чем двухфазное, поскольку напряжение, под которым оказывается человек, не превышает фазного, т.е. меньше линейного в 1,73 раза. При однофазном включении на величину тока влияют также сопротивление изоляции и емкость проводов относительно земли, сопротивление пола, на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

Согласно Правилам устройства электроустановок (ПУЭ) все производственные помещения по степени опасности поражения электрическим током разделяются на три класса.

1. Помещения с повышенной опасностью, характеризующиеся наличием одного из следующих факторов (признаков): сырости, когда относительная влажность превышает 75 %; высокой температуры воздуха, превышающей 35 оС; токопроводящей пыли; токопроводящих полов; возможности одновременного прикосновения к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т.п., с одной стороны, и к металлическим корпусам электрооборудования – с другой.

2. Особо опасные помещения, характеризующиеся наличием одного из трех условий; особой сырости, когда относительная влажность воздуха близка к 100%; химическая активность среды, когда содержащиеся пары или образующиеся отложения действуют разрушающе на изоляцию и токоведущие части оборудования; двух и более признаков одновременно, свойственных помещениям с повышенной опасностью.

3. Помещения без повышенной опасности, характеризующиеся отсутствием признаков повышенной и особой опасности.

Меры защиты от опасности поражения электрическим током делятся на:

- организационные (инструктаж; соблюдение правил техники безопасности; правильная организация рабочего места; режим труда и отдыха; применение средств индивидуальной защиты; применение предупреждающих плакатов и знаков безопасности; подбор кадров);

- организационно-технические (изолирование и ограждение токоведущих частей электрооборудования; применение блокировок, переносных заземлителей; защитная изоляция);

- технические (применение малых напряжений (42, 36 и 12 В); разделение электрической сети на отдельные электрически не связанные между собой участки с помощью разделительного трансформатора; изоляция; компенсация емкостного тока утечки; защитное заземление; защитное зануление; защитное отключение).

Заземлитель – это совокупность металлических соединенных проводников, находящихся в соприкосновении с землей или ее эквивалентом. Заземлители бывают искусственные, предназначенные для целей заземления, и естественные – находящиеся в земле металлические предметы иного назначения.

Защитное зануление осуществляется присоединением корпуса и других конструктивных нетоковедущих частей электроустановок к неоднократному заземленному нулевому проводу.

Наши рекомендации