Принятие решений в условиях неопределенности
Предположим, что ЛПР (Лицо, Принимающее Решения) рассматривает несколько возможных решений . Ситуация неопределенна, понятно лишь, что наличествует какой-то из вариантов . Если будет принято -e решение, а ситуация есть -я , то фирма, возглавляемая ЛПР, получит доход . Матрица называется матрицей последствий (возможных решений). Какое же решение нужно принять ЛПР? В этой ситуации полной неопределенности могут быть высказаны лишь некоторые рекомендации предварительного характера. Они не обязательно будут приняты ЛПР. Многое будет зависеть, например, от его склонности к риску. Но как оценить риск в данной схеме?
Допустим, мы хотим оценить риск, который несет -e решение. Нам неизвестна реальная ситуация. Но если бы ее знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. Т.е. если ситуация есть -я , то было бы принято решение, дающее доход .
Значит, принимая -e решение мы рискуем получить не , а только , значит принятие -го решения несет риск недобрать . Матрица называется матрицей рисков.
Матрица последствий есть
0 8 12 24
-6 -2 0 -6
Q= 0 2 4 16
-6 -5 -4 3
Составим матрицу рисков. Имеем q1=0;q2=8;q3=12;q4=24. Следовательно, матрица рисков есть
0 0 0 0
6 10 12 30
R= 0 6 8 8
6 13 16 21
А. Принятие решений в условиях полной неопределенности.
Не все случайное можно "измерить" вероятностью. Неопределенность – более широкое понятие. Неопределенность того, какой цифрой вверх ляжет игральный кубик отличается от неопределенности того, каково будет состояние российской экономики через 15 лет. Кратко говоря, уникальные единичные случайные явления связаны с неопределенностью, массовые случайные явления обязательно допускают некоторые закономерности вероятностного характера.
Ситуация полной неопределенности характеризуется отсутствием какой бы то ни было дополнительной информации. Какие же существуют правила-рекомендации по принятию решений в этой ситуации?
Правило Вальда (правило крайнего пессимизма). Рассматривая -e решение будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход .
Но теперь уж выберем решение с наибольшим . Итак, правило Вальда рекомендует принять решение , такое что
Так, в вышеуказанном примере, имеем a1=0; a2=-6; a3=0; a4=-6. Теперь из этих чисел находим максимальное. Это – 0 . Значит, правило Вальда рекомендует принять 1-ое или 3-е решение.
Правило Сэвиджа (правило минимального риска). При применении этого правила анализируется матрица рисков . Рассматривая -e решение будем полагать, что на самом деле складывается ситуация максимального риска
Но теперь уж выберем решение с наименьшим . Итак, правило Сэвиджа рекомендует принять решение , такое что
Так, в вышеуказанном примере, имеем b1=0; b2=30; b3=8; b4=21. Теперь из этих чисел находим минимальное. Это – 0. Значит правило Сэвиджа рекомендует принять 1-ое решение.
Правило Гурвица (взвешивающее пессимистический и оптимистический подходы к ситуации). Принимается решение , на котором достигается максимум
где . Значение выбирается из субъективных соображений. Если приближается к 1, то правило Гурвица приближается к правилу Вальда, при приближении к 0, правило Гурвица приближается к правилу "розового оптимизма". При правило Гурвица рекомендует:
½(0)+1/2*24= 12
½(-6)+1/2*0= -3
½(0)+1/2*16= 8
½(-6)+1/2*3= -3/2
1-е решение.
В. Принятие решений в условиях частичной неопределенности.
Предположим, что в рассматриваемой схеме известны вероятности того, что реальная ситуация развивается по варианту . Именно такое положение называется частичной неопределенностью. Как здесь принимать решение? Можно выбрать одно из следующих правил.
Правило максимизации среднего ожидаемого дохода. Доход, получаемый фирмой при реализации -го решения, является случайной величиной с рядом распределения
… | ||||
… |
Математическое ожидание и есть средний ожидаемый доход, обозначаемый также . Итак, правило рекомендует принять решение, приносящее максимальный средний ожидаемый доход.
В схеме из предыдущего п. вероятности есть (1/4,1/4,1/3,1/6). Тогда
Q1= 0*1/4+8*1/4+12*1/3+24*1/6=10
Q2= -6*1/4-2*1/4+0*1/3-6*1/6= -3
Q3= 0*1/4+2*1/4+4*1/3+16*1/6= 4,5
Q4= -6*1/4-5*1/4-4*1/3+3*1/6= -43/12≈ -3,58
Максимальный средний ожидаемый доход равен 10, что соответствует 1-му решению.
Правило минимизации среднего ожидаемого риска. Риск фирмы при реализации -го решения, является случайной величиной с рядом распределения
… | ||||
… |
Математическое ожидание и есть средний ожидаемый риск, обозначаемый также . Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск.
Вычислим средние ожидаемые риски при указанных выше вероятностях. Получаем
R1=0*1/4+0*1/4+0*1/3+0*1/6=0
R2=6*1/4+10*1/4+12*1/3+30*1/6=13
R3=0*1/4+6*1/4+8*1/3+8*1/6=11/2=5,5
R4=6*1/4+13*1/4+16*1/3+21*1/6=163/12≈13,58
Минимальный средний ожидаемый риск равен 0, что соответствует 1-му решению.
Нанесем средние ожидаемые доходы и средние ожидаемые риски на плоскость – доход откладываем по вертикали, а риски по горизонтали (см.рис.):
Получили 4 точки. Чем выше точка
, тем более доходная операция, Q1
чем точка правее – тем более она
рисковая. Значит, нужно выбирать
точку выше и левее. Точка
доминирует точку , если Q3
и и хотя бы одно из этих
неравенств строгое. В нашем случае
1-ая операция доминирует все остальные.
Q2
Q4
Точка, не доминируемая никакой другой называется оптимальной по Парето, а множество всех таких точек называется множеством оптимальности по Парето. Легко видеть, что если из рассмотренных операций надо выбрать лучшую, то ее обязательно надо выбрать из операций, оптимальных по Парето. В нашем случае, множество Парето, т.е. оптимальных по Парето операций, состоит только из одной 1-ой операции.
Для нахождения лучшей операции иногда применяют подходящую взвешивающую формулу, которая для пар дает одно число, по которому и определяют лучшую операцию. Например, пусть взвешивающая формула есть . Тогда получаем:
f(Q1)=2*10-0 =20
f(Q2)=2*(-3)-13= -19
f(Q3)=2*4,5-5,5=3,5
f(Q4)=2*(-43/12)-163/12= -83/4= -20,75
Видно, что 1-ая операция – лучшая, а 4-ая – худшая.