Известняковый (известковый) метод

Метод очистки основан на нейтрализации сернистой кислоты, получающейся в результате растворения двуокиси серы, содержащейся в дымовых газах, щелочными реагентами: гидратом окиси кальция (известью) или карбонатом кальция (известняком). При этом протекают следующие реакции:

Ca(OH)2 +SO2 =CaSO3 +H2O

CaCO3+SO2 =CaSO3+CO2

В результате этих реакций получается сульфит кальция, частично окисляющийся в сульфат. В большинстве случаев продукты нейтрализации не используются и направляются в отвал.

Преимуществами известнякового (известкового) метода являются простота технологической схемы, доступность в дешевизне сорбента, относительно малые капитальные затраты, возможность очистки газа без предварительного охлаждения и обеспыливания.

К недостаткам метода относятся низкий коэффициент использования известняка, зависящий от типа применяемого минерала и достигающий, как правило, 40–50%, получение в качестве продукта утилизации неиспользуемого шлама, относительно низкая эффективность очистки, подверженность забиванию кристаллическими отложениями абсорбционной аппаратуры и жидкостных коммуникаций.

Дымовые газы очищаются от золы в золоуловителе, установленном перед дымососом, и затем направляются в скруббер, орошаемый раствором, содержащим мелкоразмолотый известняк и продукты нейтрализации.

Суспензия известняка подготавливается в специальной установке, хотя подмешивание известняка в топливо может проводиться перед его размолом; в последнем случае возникает опасность образования отложении на поверхностях нагрева.

Очищенные газы освобождаются от брызг раствора в брызгоуловителе. При всех мокрых способах очистки дымовых газов от окислов серы температуры уходящих газов понижаются с 130–170 до 30–50°С. При столь низкой температуре удаляемых газов резко ухудшается рассеивание остаточных вредностей в атмосфере, так как дымовые газы слабо поднимаются над устьем дымовой трубы.

После брызгоуловителя предусмотрена установка теплообменника для повышения температуры удаляемых в атмосферу газов. Подогрев обычно осуществляется жидким или газовым топливом. Количество затрачиваемой при этом теплоты составляет около 3% теплоты топлива, расходуемого на котел.

В кислый раствор, выходящий из скруббера, добавляется свежая известняковая суспензия для нейтрализации кислоты. После выдержки в специальных емкостях для завершения процесса кристаллизации сульфита кальция жидкость насосом направляется на орошение в скруббер. По мере накопления в орошающей жидкости сульфита и сульфата кальция часть суспензии выводится из цикла орошения и через сгуститель направляется в шлакосборник, и далее на золоотвал.

В расчете принимается, что сульфит полностью окисляется в сульфат. Простота технологической схемы и аппаратуры, дешевизна используемых веществ способствуют достаточно широкому применению этого способа сероочистки.

Наибольшие трудности возникают из-за необходимости остановки сероулавливающей установки для очистки аппаратуры от кристаллических отложений CaSO3 и брызгоуловителей от отложений, содержащихся в каплях взвешенных веществ.

Наиболее вероятной областью использования отходов сероулавливающих установок, работающих по известняковому способу, является их переработка на строительные материалы. При окислительном обжиге отходов совместно с золой возможно получение быстротвердеющих вяжущих строительных материалов с сопротивлением сжатию около 500 кг/см2. Однако обезвоживание и сушка отходов являются дорогостоящими операциями. Сульфит кальция может также использоваться в сульфитцеллюлозном производстве.

Для реализации известнякового или известкового методов рекомендованы различные эффективные абсорберы: аппараты с подвижной шаровой насадкой, выполненной из мрамора, резины или полиэтилена, трубы Вентури, полые распыливающие абсорберы, струйно-пенный аппарат, аппарат с насадкой из полипропилена или неопрена.

Абсорбер, применяемый для очистки больших объемов газов от SO2 известняковым методом, должен отвечать следующим требованиям: высокая эффективность, большая пропускная способность по газу, возможность работы в широком диапазоне изменения нагрузок по газу и жидкости, простота конструкции, отсутствие элементов, легко забивающихся кристаллическими отложениями, возможно низкое гидравлическое сопротивление.

Магнезитовый метод

Связывание двуокиси серы происходит при взаимодействии ее с магнезитом по реакции

MgO+SO2 =MgSO3

Образовавшийся сульфит магния снова взаимодействует с двуокисью серы и водой, образуя бисульфит магния:

MgSO3 +SO22 0=Mg(HSO3 )2

Образовавшийся бисульфит нейтрализуется добавлением магнезита:

Mg(HSO3 ) 2+MgO=2MgSO3 +H2 O

Образовавшийся сульфит магния в процессе обжига при температуре 800–900°С подвергается термическому разложению с образованием исходных продуктов по реакции:

MgSO3 =MgO+SO2

Окись магния возвращается в процесс, а концентрированный SO2 может быть переработан в серную кислоту или элементарную серу.

Газ очищается от окислов серы до концентрации 0,03% в скруббере (рис. 2), а образовавшийся раствор бисульфита магния с концентрацией 50–70 г./л поступает в циркуляционный сборник, откуда часть раствора подается в напорный бак и возвращается на орошение скруббера, а другая часть в нейтрализатор для выделения сульфита магния. Раствор из нейтрализатора выводится в гидроциклоиы, затем пульпа направляется на ленточный вакуум-фильтр и затем в обжиговую печь, где образуются двуокись серы и магнезит, повторно используемый в цикле.

Маточный раствор и промывочная вода после фильтр-пресса поступает в сборник осветленного раствора, куда добавляется магнезит из обжиговой печи. Раствор из сборника подается в напорный бак, где смешивается с кислым раствором из циркуляционного сборника и направляется на орошение скруббера. Степень очистки газов от SO2 составляет 90 –92%.

Достоинством магнезитового способа является возможность достижения высокой степени очистки газов без предварительного их охлаждения. Обжиг сульфита магния может производиться на химическом предприятии за пределами ТЭС, так как высушенные и обезвоженные кристаллы могут достаточно удобно транспортироваться. Основным недостатком магнезитового способа является наличие многочисленных операций с твердыми веществами (кристаллами сульфита, окиси магния, золы), что связано с абразивным износом аппаратуры и пилением. Для сушки кристаллов и удаления гидратной влаги требуется значительное количество тепла.

ОТNO2 :

Все методы очистки дымовых газов от оксидов азота - процессы денитрификации, как и процессы десульфуризации - можно разделить на сухие и мокрые. Особенностью первых является то, что в большинстве случаев они предназначены для избирательной очистки газов только от NОX с образованием конечного экологически чистого - молекулярного азота.

Мокрые (жидкофазные) методы можно разделить на процессы без регенерации абсорбента (одноразовое использование) и процессы с регенерацией абсорбента (т. е. когда абсорбент циркулирует по замкнутому контуру). Последние методы используются, как правило, для одновременной очистки дымовых газов от SО2 и NОX. Конечными продуктами таких методов на ряду с молекулярным азотом являются соединения, используемые в качестве удобрения. Реализация этих продуктов может в значительной степени компенсировать затраты на строительство и эксплуатацию установок очистки дымовых газов.­Большинство процессов сухой очистки основано на использовании реакций гетерогенного каталитического или термического разложения, которые протекают при температуре 300...1000 °С. Для печей и паровых котлов очистка дымовых газов, с их помощью обычно проводится до подачи газов в воздухонагреватели. Жидкофазная очистка дымовых газов, как правило, проводится непосредственно перед выбросом газов в дымовую трубу .

К основным методам удаления NОX с помощью сухой очистки относятся:

· селективное каталитическое восстановление аммиаком (СКВ);

· селективное высокотемпературное (некаталитическое) восстановление аммиаком;

· неселективное каталитическое восстановление;

· адсорбция.

Только для котлов с твердым шлакоудалением с настенными и тангенциальными горелками, другие нормативы в стадии утверждения.

В основе методов удаления NОX, а также NОX и SО2 с помощью мокрой очистки, лежат следующие процессы :

· окисление-абсорбция;

· абсорбция- окисление;

· абсорбция-восстановление

Наши рекомендации