Суть метода прямоугольников
Составные квадратурные формулы
В случае разбиения отрезка интегрирования на элементарных отрезков приведённые выше формулы применяются на каждом из этих элементарных отрезков между двумя соседними узлами. В результате, получаютсясоставные квадратурные формулы
1. Для левых прямоугольников:
2. Для правых прямоугольников:
3. Для средних прямоугольников:
Формулу с вычислением значения в средней между двумя узлами точке можно применять лишь тогда, когда подынтегральная функция задана аналитически, либо каким-нибудь иным способом, допускающим вычисление значения в произвольной точке. В задачах, где функция задана таблицей значений остаётся лишь вычислять среднее значение между интегралами, посчитанными по формулам левых и правых прямоугольников соответственно, что приводит к составной квадратурной формуле трапеций.
Поскольку составные квадратурные формулы являются ни чем иным, как суммами, входящими в определение интеграла Римана, при они сходятся к точному значению интеграла. Соответственно, с увеличением точность получаемого по приближённым формулам результата возрастает.
Сравнение применения различных формул прямоугольников | |||||||||||||||
|
Составные формулы для равномерных сеток [править]
Равномерную сетку можно описать следующим набором формул:
где — шаг сетки.
Для равномерных сеток формулы прямоугольников можно записать в виде следующих формул Котеса:
1. Составная формула левых прямоугольников:
2. Составная формула правых прямоугольников:
Погрешность метода
Для формул правых и левых прямоугольников погрешность составляет
Для формулы прямоугольников (средних)
Для составных формул правых и левых прямоугольников на равномерной сетке:
Для составной формулы прямоугольников:
Суть метода и решение примеров
Суть метода прямоугольников.
Пусть функция y = f(x) непрерывна на отрезке [a; b]. Нам требуется вычислить определенный интеграл .
Обратимся к понятию определенного интеграла. Разобьем отрезок [a;b] на n частей точками . Внутри каждого отрезка выберем точку . Так как по определению определенный интеграл есть предел интегральных сумм при бесконечном уменьшении длины элементарного отрезка разбиения , то любая из интегральных сумм является приближенным значением интеграла .
Суть метода прямоугольников заключается в том, что в качестве приближенного значения определенного интеграла берут интегральную сумму (далее мы покажем, какую именно интегральную сумму берут в методе прямоугольников).