Компьютерное моделирование как метод научного познания

Курс «Компьютерное моделирование» (КМ) - это новый и довольно сложный курс в цикле информационных дисциплин. Он является междисциплинарным курсом, для его успешного освоения требуется наличие самых разнообразных знаний: во-первых, знаний в выбранной предметной области - если мы моделируем физические процессы, мы должны обладать определенным уровнем знания законов физики, моделируя экологические процессы - биологических законов, моделируя экономические процессы - знанием законов экономики, кроме того, т.к. компьютерное моделирование использует практически весь аппарат современной математики, предполагается знание основных математических дисциплин - алгебры, матанализа, теории дифференциальных уравнений, матстатистики, теории вероятности. Для решения математических задач на компьютере необходимо владеть в полном объеме численными методами решения нелинейных уравнений, систем линейных уравнений, дифференциальных уравнений, уметь аппроксимировать и интерполировать функции. И, конечно же, предполагается свободное владение современными информационными технологиями, знание языков программирования и владение навыками разработки прикладных программ.

Настоящий курс рассматривает моделирование с двух точек зрения: с общетеоретической и методологической – как метод научного познания, с практической – как технологию решения прикладных научно-технических задач, опирающуюся на использование компьютера. В последнем случае говорят о компьютерном моделировании.

В этом курсе, в значительной степени на примерах из различных областей знания, показаны некоторые типичные задачи компьютерного математического моделирования. При этом, как правило, не затрагиваются некомпьютерные модели, такие, например, как математические модели из «чистой» математики. Термин «математическая модель» увязывается здесь, в основном, с некоторой предметной областью, сущностью окружающего мира.

Абстрактное моделирование с помощью компьютеров – вербальное, информационное, математическое – в наши дни стало одной из информационных технологий, исключительно мощной в познавательном плане. Изучение компьютерного математического моделирования открывает широкие возможности для осознания связи информатики с математикой и другими науками, естественными и социальными.

Компьютерное моделирование, возникшее как одно из направлений математического моделирования с развитием информационных компьютерных технологий стало самостоятельной и важной областью применения компьютеров. В настоящее время компьютерное моделирование в научных и практических исследованиях является одним из основных методов познания. Без компьютерного моделирования сейчас невозможно решение крупных научных и экономических задач.

Компьютерное моделирование является одним из эффективных методов изучения физических систем. Часто компьютерные модели проще и удобнее исследовать, они позволяют проводить вычислительные эксперименты, реальная постановка которых затруднена или может дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемых объектов, исследовать отклик физической системы на изменения ее параметров и начальных условий.

Компьютерное моделирование требует абстрагирования от конкретной природы явлений, построения сначала качественной, а затем и количественной модели. За этим следует проведение серии вычислительных экспериментов на компьютере, интерпретация результатов, сопоставление результатов моделирования с поведением исследуемого объекта, последующее уточнение модели и т.д.

К основным этапам компьютерного моделирования относятся: постановка задачи, определение объекта моделирования; разработка концептуальной модели, выявление основных элементов системы и элементарных актов взаимодействия; формализация, то есть переход к математической модели; создание алгоритма и написание программы; планирование и проведение компьютерных экспериментов; анализ и интерпретация результатов.

Различают аналитическое и имитационное моделирование. Аналитическими называются модели реального объекта, использующие алгебраические, дифференциальные и другие уравнения, а также предусматривающие осуществление однозначной вычислительной процедуры, приводящей к их точному решению. Имитационными называются математические модели, воспроизводящие алгоритм функционирования исследуемой системы путем последовательного выполнения большого количества элементарных операций.

Принципы моделирования состоят в следующем:

1. Принцип информационной достаточности. При полном отсутствии информации об объекте построить модель невозможно. При наличии полной информации моделирование лишено смысла. Существует уровень информационной достаточности, при достижении которого может быть построена модель системы.

2. Принцип осуществимости. Создаваемая модель должна обеспечивать достижение поставленной цели исследования за конечное время.

3. Принцип множественности моделей. Любая конкретная модель отражает лишь некоторые стороны реальной системы. Для полного исследования необходимо построить ряд моделей исследуемого процесса, причем каждая последующая модель должна уточнять предыдущую.

4. Принцип системности. Исследуемая система представима в виде совокупности взаимодействующих друг с другом подсистем, которые моделируются стандартными математическими методами. При этом свойства системы не являются суммой свойств ее элементов.

5. Принцип параметризации. Некоторые подсистемы моделируемой системы могут быть охарактеризованы единственным параметром: вектором, матрицей, графиком, формулой.

Компьютерное моделирование систем часто требует решения дифференциальных уравнений. Важным методом является метод сеток, включающий в себя метод конечных разностей Эйлера. Он состоит в том, что область непрерывного изменения одного или нескольких аргументов заменяют конечным множеством узлов, образующих одномерную или многомерную сетку, и работают с функцией дискретного аргумента, что позволяет приближенно вычислить производные и интегралы. При этом бесконечно малые приращения функции f = f(x, y, z, t) и приращения ее аргументов заменяются малыми, но конечными разностями.

Выработана технология исследования сложных проблем, основанная на построении и анализе, с помощью вычислительной техники математической модели изучаемого объекта. Такой метод исследования называется вычислительным экспериментом.

Понятие моделирования - это очень широкое понятие, оно не ограничивается только математическим моделированием. Истоки моделирования обнаруживаются в далеком прошлом. Наскальные изображения мамонта, пронзенного копьем, на стене пещеры можно рассматривать как модель удачной охоты, созданную древним художником.

Элементы моделирования часто присутствуют в детских играх, любимое занятие детей - моделировать подручными средствами предметы и отношения из жизни взрослых. В моделях отражаются глубинные закономерности, установленные в результате целенаправленных исследований. В роли моделей могут выступать самые разнообразные объекты: изображения, схемы, карты, графики, компьютерные программы, математические формулы и т.д. Если мы заменяем реальный объект математическими формулами (допустим, согласно 2 закону Ньютона, опишем движение некоторого тела системой нелинейных уравнений, или, согласно закону теплопроводности опишем процесс распространения тепла дифференциальным уравнение 2 порядка), то говорят о математическом моделировании, если реальный объект заменяем компьютерной программой - о компьютерном моделировании.

Но что бы ни выступало в роли модели, постоянно прослеживается процесс замещения реального объекта с помощью объекта-модели с целью изучения реального объекта или передачи информации о свойствах реального объекта. Это процесс и называется моделированием. Замещаемый объект называется оригиналом, замещающий - моделью.

Компьютерное моделирование как метод научного познания - student2.ru

Математические пакеты в моделировании Общий обзор. Алгоритмические языки моделирования и их особенности (Simula, Slam II). Пакеты прикладных программ. Особенности их организации и эксплуатации. Математические пакеты. Общие характеристики пакетов Maple, MathCad, MatLab, Mathematika. Применение пакетов в моделировании. Сервисные программы. Графические средства анализа результатов моделирования. Объектно-ориентированные модули и программы. Особенности использования многопроцессорной вычислительной техники в задачах моделирования.

Наши рекомендации