Табличные структуры (таблицы данных, матрицы данных)

С таблицами данных мы тоже хорошо знакомы, достаточно вспомнить всем извест­ную таблицу умножения. Табличные структуры отличаются от списочных тем, что элементы данных определяются адресом ячейки, который состоит не из одного пара­метра, как в списках, а из нескольких. Для таблицы умножения, например, адрес ячейки определяется номерами строки и столбца. Нужная ячейка находится на их пересечении, а элемент выбирается из ячейки.

При хранении табличных данных количество разделителей должно быть больше, чем для данных, имеющих структуру списка. Например, когда таблицы печатают в книгах, строки и столбцы разделяют графическими элементами — линиями верти­кальной и горизонтальной разметки. (рис. 1.4)

Если нужно сохранить таблицу в виде длинной символьной строки, используют один символ-разделитель между элементами, принадлежащими одной строке, и другой разделитель для отделения строк, например так:

Меркурий*0,39*0,056*0#Венера*0,67*0,88*0#Земля*1,0*1,0*1#Марс*1,51*0,1*2#...

Для розыска элемента, имеющего адрес ячейки (т, п), надо просмотреть набор данных с самого «начала и пересчитать внешние разделители. Когда будет отсчитан т-1 разделитель, надо пересчитывать внутренние разделители. После того как будет найден п-1 разделитель, начнется нужный элемент. Он закончится, когда будет встречен любой очередной разделитель.

Табличные структуры (таблицы данных, матрицы данных) - student2.ru

Еще проще можно действовать, если все элементы таблицы имеют равную длину. Такие таблицы называют матрицами. В данном случае разделители не нужны, поскольку все элементы имеют равную длину и количество их известно. Для розыска элемента с адресом (т, п) в матрице, имеющей М строк и ЛГ столбцов, надо про­смотреть ее с самого начала и отсчитать a [N(m - 1) + (п - 1)] символ, где а — длина одного элемента. Со следующего символа начнется нужный элемент. Его длина тоже равна а, поэтому его конец определить нетрудно.

Таким образом, табличные структуры данных (матрицы) — это упорядоченные структуры, в которых адрес элемента определяется номером строки и номером стол­бца, на пересечении которых находится ячейка, содержащая искомый элемент. Многомерные таблицы. Выше мы рассмотрели пример таблицы, имеющей два из­мерения (строка и столбец), но в жизни нередко приходится иметь дело с таблица­ми, у которых количество измерений больше. Вот пример таблицы, с помощью которой может быть организован учет учащихся.

Номер факультета: 3

Номер курса (на факультете): 2

Номер специальности (на курсе): 2

Номер группы в потоке одной специальности: 1

Номер учащегося в группе: 19

Размерность такой таблицы равна пяти, и для однозначного отыскания данных об учащемся в подобной структуре надо знать все пять параметров (координат).

Иерархические структуры данных

Нерегулярные данные, которые трудно представить в виде списка или таблицы, часто представляют в виде иерархических структур. С подобными структурами мы очень хорошо знакомы по обыденной жизни. Иерархическую структуру имеет система почтовых адресов. Подобные структуры также широко применяют в научных систематизациях и всевозможных классификациях (рис. 1.5). В иерархической структуре адрес каждого элемента определяется путем доступа (маршрутом), ведущим от вершины структуры к данному элементу. Вот, например, как выглядит путь доступа к команде, запускающей программу Калькулятор (стандарт­ная программа компьютеров, работающих в операционной системе Windows 98):

Пуск ► Программы ► Стандартные ► Калькулятор.

Табличные структуры (таблицы данных, матрицы данных) - student2.ru

Табличные структуры (таблицы данных, матрицы данных) - student2.ru Дихотомия данных.Основным недостатком иерархических структур данных явля­ется увеличенный размер пути доступа. Очень часто бывает так, что длина маршрута оказывается больше, чем длина самих данных, к которым он ведет. Поэтому в инфор­матике применяют методы для регуляризации иерархических структур с тем, чтобы сделать путь доступа компактным. Один из методов получил название дихотомии. Его суть понятна из примера, представленного на рис. 1.6.

Табличные структуры (таблицы данных, матрицы данных) - student2.ru В иерархической структуре, построенной методом дихотомии, путь доступа к любому элементу можно представить как путь через рациональный лабиринт с поворотами налево (0) или направо (1) и, таким образом, выразить путь доступа в виде ком­пактной двоичной записи. В нашем примере путь доступа к текстовому процессору Word 2000 выразится следующим двоичным числом: 1010.

Табличные структуры (таблицы данных, матрицы данных) - student2.ru Табличные структуры (таблицы данных, матрицы данных) - student2.ru Табличные структуры (таблицы данных, матрицы данных) - student2.ru Табличные структуры (таблицы данных, матрицы данных) - student2.ru Упорядочение структур данных

Списочные и табличные структуры являются простыми. Ими легко пользоваться, поскольку адрес каждого элемента задается числом (для списка), двумя числами (для двумерной таблицы) или несколькими числами для многомерной таблицы. Они также легко упорядочиваются. Основным методом упорядочения является сортировка. Данные можно сортировать по любому избранному критерию, например; по алфавиту, по возрастанию порядкового номера или по возрастанию какого-либо параметра.

Несмотря на многочисленные удобства, у простых структур данных есть и недо­статок — их трудно обновлять. Если, например, перевести студента из одной группы в другую, изменения надо вносить сразу в два журнала посещаемости; при этом в обоих журналах будет нарушена списочная структура. Если переведенного студента вписать в конец списка группы, нарушится упорядочение по алфавиту, а если его вписать в соответствии с алфавитом, то изменятся порядковые номера всех студен­тов, которые следуют за ним.

Таким образом, при добавлении произвольного элемента в упорядоченную структуру списка может происходить изменение адресных данных у других элементов. В журналах успеваемости это пережить нетрудно, но в системах, выполняющих автоматическую обработку данных, нужны специальные методы для решения этой проблемы. Иерархические структуры данных по форме сложнее, чем линейные и табличные, но они не создают проблем с обновлением данных. Их легко развивать путем созда­ния новых уровней. Даже если в учебном заведении будет создан новый факультет, это никак не отразится на пути доступа к сведениям об учащихся прочих факультетов. Недостатком иерархических структур является относительная трудоемкость записи адреса элемента данных и сложность упорядочения. Часто методы упорядочения в таких структурах основывают на предварительной индексации, которая заключается в том, что каждому элементу данных присваивается свой уникальный индекс, кото­рый можно использовать при поиске, сортировке и т. п. Ранее рассмотренный прин­цип дихотомии на самом деле является одним из методов индексации данных в иерархических структурах. После такой индексации данные легко разыскиваются по двоичному коду связанного с ними индекса.

Адресные данные. Если данные хранятся не как попало, а в организованной структуре (причем любой), то каждый элемент данных приобретает новое свойство (параметр), который можно назвать адресом. Конечно, работать с упорядоченными данными удобнее, но за это приходится платить их размножением, поскольку адреса элементов данных — это тоже данные и их тоже надо хранить и обрабатывать.

Файлы и файловая структура

Наши рекомендации