Программное обеспечение суперкомпьютеров

Наиболее распространёнными программными средствами суперкомпьютеров, также как и параллельных или распределённых компьютерных систем являются интерфейсы программирования приложений (API) на основе MPI и PVM, и решения на базе открытого программного обеспечения, наподобие Beowulf и openMosix, позволяющего создавать виртуальные суперкомпьютеры даже на базе обыкновенных рабочих станций и персональных компьютеров. Для быстрого подключения новых вычислительных узлов в состав узкоспециализированных кластеров применяются технологии наподобие ZeroConf. Примером может служить реализация рендеринга в программном обеспечении Shake, распространяемом компанией Apple. Для объединения ресурсов компьютеров, выполняющих программу Shake, достаточно разместить их в общем сегменте локальной вычислительной сети.

В настоящее время границы между суперкомпьютерным и общеупотребимым программным обеспечением сильно размыты и продолжают размываться ещё более вместе с проникновением технологий параллелизации и многоядерности в процессорные устройства персональных компьютеров и рабочих станций. Исключительно суперкомпьютерным программным обеспечением сегодня можно назвать лишь специализированные программные средства для управления и мониторинга конкретных типов компьютеров, а также уникальные программные среды, создаваемые в вычислительных центрах под «собственные», уникальные конфигурации суперкомпьютерных систем.

1.3 Сферы применения суперкомпьютеров

Для каких применений нужна столь дорогостоящая техника? Может показаться, что с ростом производительности настольных ПК и рабочих станций, а также серверов, сама потребность в суперЭВМ будет снижаться. Это не так. С одной стороны, целый ряд приложений может теперь успешно выполняться на рабочих станциях, но с другой стороны, время показало, что устойчивой тенденцией является появление все новых приложений, для которых необходимо использовать суперЭВМ.

Прежде всего следует указать на процесс проникновения суперЭВМ в совершенно недоступную для них ранее коммерческую сферу. Речь идет не только скажем, о графических приложениях для кино и телевидения, где требуется все та же высокая производительность на операциях с плавающей запятой, а прежде всего о задачах, предполагающих интенсивную (в том числе, и оперативную) обработку транзакций для сверхбольших БД. В этот класс задач можно отнести также системы поддержки принятия решений и организация информационных складов. Конечно, можно сказать, что для работы с подобными приложениями в первую очередь необходимы высокая производительность ввода-вывода и быстродействие при выполнении целочисленных операций, а компьютерные системы, наиболее оптимальные для таких приложений, например, MPP-системы Himalaya компании Tandem, SMP-компьютеры SGI CHAL ENGE, AlphaServer 8400 от DEC - это не совсем суперЭВМ. Но следует вспомнить, что такие требования возникают, в частности, со стороны ряда приложений ядерной физики, например, при обработке результатов экспериментов на ускорителях элементарных частиц. А ведь ядерная физика - классическая область применения суперЭВМ со дня их возникновения.

Как бы то ни было, наметилась явная тенденция к сближению понятий "мэйнфрейм", "многопроцессорный сервер" и "суперЭВМ". Нелишне заметить, что это происходит на фоне начавшегося во многих областях массированного перехода к централизации и укрупнению в противоположность процессу разукрупнениями децентрализации.

Традиционной сферой применения суперкомпьютеров всегда были научные исследования: физика плазмы и статистическая механика, физика конденсированных сред, молекулярная и атомная физика, теория элементарных частиц, газовая динамика и теория турбулентности, астрофизика. В химии - различные области вычислительной химии: квантовая химия (включая расчеты электронной структуры для целей конструирования новых материалов, например, катализаторов и сверхпроводников), молекулярная динамика, химическая кинетика, теория поверхностных явлений и химия твердого тела, конструирование лекарств. Естественно, что ряд областей применения находится на стыках соответствующих наук, например, химии и биологии, и перекрывается с техническими приложениями. Так, задачи метеорологии, изучение атмосферных явлений и, в первую очередь, задача долгосрочного прогноза погоды, для решения которой постоянно не хватает мощностей современных суперЭВМ, тесно связаны с решением ряда перечисленных выше проблем физики. Среди технических проблем, для решения которых используются суперкомпьютеры, задачи аэрокосмической и автомобильной промышленности, ядерной энергетики, предсказания и разработки месторождений полезных ископаемых, нефтедобывающей и газовой промышленности (в том числе проблемы эффективной эксплуатации месторождений, особенно трехмерные задачи их исследования), и, наконец, конструирование новых микропроцессоров и компьютеров, в первую очередь самих суперЭВМ.

Суперкомпьютеры традиционно применяются для военных целей. Кроме очевидных задач разработки оружия массового уничтожения и конструирования самолетов и ракет, можно упомянуть, например, конструирование бесшумных подводных лодок и др. Самый знаменитый пример - это американская программа СОИ. Уже упоминавшийся MPP-компьютер Министерства энергетики США будет применяться для моделирования ядерного оружия, что позволит вообще отменить ядерные испытания в этой стране.

Анализируя потенциальные потребности в суперЭВМ существующих сегодня приложений, можно условно разбить их на два класса. К первому можно отнести приложения, в которых известно, какой уровень производительности надо достигнуть в каждом конкретном случае, например, долгосрочный прогноз погоды. Ко второму можно отнести задачи, для которых характерен быстрый рост вычислительных затрат с увеличением размера исследуемого объекта. Например, в квантовой химии неэмпирические расчеты электронной структуры молекул требуют затрат вычислительных ресурсов, пропорциональных N^4 или N^5, где N условно характеризует размер молекулы. Сейчас многие молекулярные системы вынужденно исследуются в упрощенном модельном представлении. Имея в резерве еще более крупные молекулярные образования (биологические системы, кластеры и т.д.), квантовая химия дает пример приложения, являющегося "потенциально бесконечным" пользователем суперкомпьютерных ресурсов.

Есть еще одна проблема применения суперЭВМ, о которой необходимо сказать - это визуализация данных, полученных в результате выполнения расчетов. Часто, например, при решении дифференциальных уравнений методом сеток, приходится сталкиваться с гигантскими объемами результатов, которые в числовой форме человек просто не в состоянии обработать. Здесь во многих случаях необходимо обратиться к графической форме представления информации. В любом случае возникает задача транспортировки информации по компьютерной сети. Решению этого комплекса проблем в последнее время уделяется все большее внимание. В частности, знаменитый Национальный центр суперкомпьютерных приложений США (NCSA) совместно с компанией Silicon Graphics ведет работы по программе "суперкомпьютерного окружения будущего". В этом проекте предполагается интегрировать возможности суперкомпьютеров POWER CHALLENGE и средств визуализации компании SGI со средствами информационной супермагистрали.

Наши рекомендации