Для чего нужно прогнозировать спрос
Работа любого торгового предприятия неизбежно связана с проблемой оптимизации товарных запасов. Избыток товаров приводит к дополнительным финансовым издержкам, а недостаток – к потере постоянных покупателей и снижению объемов продаж. В обоих случаях происходит недополучение возможной прибыли, что в условиях острой конкуренции может стать причиной банкротства предприятия.
Одной из важнейшей составляющих поддержания оптимального ассортимента товаров является оперативное и долгосрочное прогнозирование спроса. Конечно, при планировании закупок можно ничего и не прогнозировать, используя как источник исходной информации устоявшийся или возникший уровень спроса. Однако такой устаревший подход в условиях динамично изменяющегося рынка и "избалованного" покупателя трудно назвать эффективным (за исключением небольших поселений, где имеется всего один магазин).
Прогнозирование спроса позволяет не только разработать оптимальный план закупок, но и эффективно управлять ресурсами предприятия. Так, например, зная, что в следующем месяце возникнет повышенный спрос не мороженое, можно будет заранее принять на работу продавцов, закупить холодильное оборудование и предусмотреть дополнительное финансирование. Если же все подобные мероприятия начать проводить в пик сезона, то все усилия могут оказаться напрасными и, даже убыточными.
Как прогнозировать спрос
Чтобы спрогнозировать спрос, разработано огромное количество теорий и специальных инструментов.
Специальное ПО
Так, например, при планировании закупок для супермаркета не обойтись без специализированного программного обеспечения. Основная проблема здесь в огромном ассортименте товаров, который просто физически невозможно "удержать в голове". Кроме того, специальное ПО позволяет автоматизировать процесс подготовки заявок, что при больших объемах закупок дает возможность сэкономить массу времени.
Microsoft Excel
При небольшом ассортименте товаров отличные результаты в прогнозировании спроса можно получить с помощью стандартного приложения Microsoft Excel. Специальные статистические функции, такие как, например, ТЕНДЕНЦИЯ и РОСТ, позволяют без ввода сложных формул мгновенно обработать большие массивы информации. Богатые оформительские возможности Microsoft Excel помогут представить полученные данные не только в табличном виде, но и в более наглядном – в форме графиков и диаграмм.
Вручную
Прогноз спроса на отдельные позиции товаров можно составлять и вручную. Так, например, если товар является новинкой, то даже самые мудреные статистические формулы и ранее накопленная информация не помогут предугадать его популярность. В таких случаях приходится надеяться не на расчеты, а на интуицию и на дополнительные факторы (мнения покупателей, рекламная поддержка и т.п.).
Формулы и методы прогнозирования спроса
Методы, используемые при прогнозировании спроса, отличаются большим разнообразием – от наивных (предполагается, что спрос в следующем месяце будет такой же, как и в прошедшем) до применения в расчетах сложных экономических и математических теорий и их программных реализаций (нейронные сети).
Метод Простой средней
Простейшим из подобных методов является использование вычислений по формуле "простого среднего". Прогноз спроса на следующий период при этом способе высчитывается как среднее арифметическое показателей спроса за все предыдущие периоды. Недостатком этого метода является его высокая "консервативность" – устаревшая информация о прежних продажах помешает проявиться последним тенденциям спроса.
Метод скользящего среднего
Более оперативно на изменение спроса реагирует метод "скользящее среднее". Расчет при этом производится не на основании данных за весь срок наблюдения, а за несколько последних периодов.
Ключевым вопросом является определение «окна скольжения» - за сколько последних периодов необходимо проводить усреднение. Чем больше этот период, тем больше совпадает прогноз по скользящему среднему с простым средним.
Определить период можно эмпирически на основании ошибки прогноза (RMSE) – рассчитать эту ошибку для разных периодов и выбрать оптимальный.
Интересной вариацией метода является расчет скользящей средней по определенным дням (то есть – для всех понедельников считается скользящая средняя за n последних понедельников, и т.д.) Такой метод может подойти товаров, обладающих ярко выраженной внутри недельной сезонностью (например, хлеб).
Метод средневзвешенной
Сочетанием вышеописанных методов является "метод взвешенного скользящего среднего". В этой модели вычисляется средневзвешенное значение на основании нескольких периодов, но более отдаленным периодам придаются меньшие веса. Таким образом, для расчетов можно брать более длительные наблюдения, но ограничить влияние на расчеты неактуальных данных.