Векторы в пространстве (6ч)

Векторы в пространстве. Коллинеарные и компланарные векторы. Параллельный перенос. Параллельное проектирование и его свойства. Параллельные проекции плоских фигур. Изображение пространственных фигур на плоскости. Сечения многогранников. Исторические сведения.

Основная цель –обобщить изученный в базовой школе материал о векторах на плоскости; сформировать у учащихся понятие вектора в пространстве; рассмотреть основные операции над векторами.

Особое внимание уделяется решению задач, т.к. при этом учащиеся овладевают векторным методом.

Повторение (4ч)

Основная цель –повторить и обобщить материал, изученный в 10 классе.

Класс

(2часа в неделю, всего 68 часов)

Плановых контрольных работ – 5.

Метод координат в пространстве (17 ч)

Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.

Основная цель–введение понятие прямоугольной системы координат в пространстве; знакомство с координатно-векторным методом решения задач; сформировать у учащихся умения применять координатный и векторный методы к решению задач на нахождение длин отрезков и углов между прямыми и векторами в пространстве.

В ходе изучения темы целесообразно использовать анало­гию между рассматриваемыми понятиями на плоскости и в пространстве. Это поможет учащимся более глубоко и осоз­нанно усвоить изучаемый материал, уяснить содержание и место векторного и координатного методов в курсе геомет­рии

Изучение координат и векторов в пространстве, с одной стороны, во многом повторяет изучение соответствующих тем планиметрии, а с другой стороны, дает алгебраический метод решения стереометрических задач.

Цилиндр, конус, шар (12ч)

Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Цилиндр и конус. Фигуры вращения. Площадь поверхности многогранника, цилиндра, конуса, усеченного конуса.

Основная цель–сформировать представления учащихся о круглых телах, изучить случаи их взаимного расположения, научить изображать вписанные и описанные фигуры.

В ходе знакомства с теоретическим материалом темы зна­чительно развиваются пространственные представления уча­щихся: круглые тела рассматривать на примере конкретных геометрических тел, изучать взаимное расположение круг­лых тел и плоскостей (касательные и секущие плоскости), ознакомить с понятиями описанных и вписанных призм и пирамид. Решать большое количество задач, что позволяет про­должить работу по формированию логических и графических умений.

В данной теме обобщаются сведения из планиметрии об окружности и круге, о взаимном расположении прямой и окружности, о вписанных и описанных окружностях. Здесь учащиеся знакомятся с основными фигурами вращения, выясняют их свойства, учатся их изображать и решать задачи на фигуры вращения. Формированию более глубоких представлений учащихся могут служить задачи на комбинации многогранников и фигур вращения.

Объемы тел (17 ч)

Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Принцип Кавальери. Объем пирамиды. Объем конуса и усеченного конуса. Объем шара и его частей. Площадь поверхности шара и его частей.

Основная цель–сформировать представления учащихся о понятиях объема и площади поверхности, вывести формулы объемов и площадей поверхностей основных пространственных фигур, научить решать задачи на нахождение объемов и площадей поверхностей.

Изучение объемов обобщает и систематизирует материал планиметрии о площадях плоских фигур. Понятие объема можно вводить по анало­гии с понятием площади плоской фигуры и формулировать основные свойства объемов.

Существование и единственность объема тела в школьном курсе математики приходится принимать без доказательства, так как вопрос об объемах принадлежит, по существу, к труд­ным разделам высшей математики. Поэтому нужные результа­ты устанавливать, руководствуясь больше наглядными со­ображениями. Учебный материал главы в основном должен усвоиться в процессе решения задач.

Практическая направленность этой темы определяется большим количеством разнообразных задач на вычисление объемов и площадей поверхностей.

Наши рекомендации