Резервы физической работоспособности

Актуальность данного раздела обусловлена тем, что современные высшие спортивные достижения невозможны без максимального напряжения физических и духовных сил человека. Следовательно, знание этих закономерностей необходимо как тренеру, физиологу и спортивному врачу, так и самому спортсмену.

Общефизиологическое значение этой проблемы состоит в том, что на примере спортивной деятельности она раскрывает значение пластичности нервной системы как для реакций срочной адаптации, так и для формирования сложных функциональных систем долговременного значения (Павлов И.П., Орбели Л.А., Анохин П.К.). Если при этом учесть высказанную еще И. М. Сеченовым мысль об универсальности мышечного сокращения, как важнейшего жизненного акта, то становится очевидным, что проблема резервов физической работоспособности сопряжена со многими фундаментальными законами общей физиологии человека.

Наиболее важной характеристикой резервных возможностей организма является адаптационная сущность, эволюционно выработанная способность организма выдерживать большую, чем обычно нагрузку (Бресткин М.П., 1968). Исследование физической работоспособности спортсмена (особенно высшей квалификации) дает уникальный фактический материал для оценки и анализа функций организма в зоне видовых предельных напряжений. Поэтому можно считать, лимитирующими факторами физической работоспособности спортсмена являются индивидуальные пределы использования им своих структурно-функциональных резервов различных органов и систем. В таблице 8 (данные различных авторов) представлены основные сведения по характеристике функциональных резервов при физической работе разной мощности. Из материалов этой таблицы следует, что основными резервами являются функциональные возможности ЦНС, нервно-мышечного аппарата, кардиореспираторной системы, метаболические и биоэнергетические процессы. Очевидно, что при различных мощностях работы и в разных видах спорта степень участия этих систем будет неодинаковым.

При работе максимальной мощности ввиду ее кратковременности главным энергетическим резервов являются анаэробные процессы (запас АТФ и КрФ, анаэробный гликолиз, скорость ресинтеза АТФ), а функциональным резервом – способность нервных центров поддерживать высокий темп активности, сохраняя необходимые межцентральные взаимосвязи. При этой работе мобилизуются и расширяются резервы силы и быстроты.

При работе субмаксимальной мощности биологические активные вещества нарушенного метаболизма в большом количестве поступают в кровь. Действуя на хеморецепторы сосудов и тканей, они рефлекторно вызывают максимальное повышение функций сердечнососудистой и дыхательной систем. Еще большему повышению системного артериального тонуса способствуют вазодилятаторы гипоксического происхождения, способствующие одновременно увеличению капиллярного кровотока.

Функциональными резервами при работе субмаксимальной мощности являются буферные системы организма и резервная щелочность крови – важнейшие факторы, тормозящие нарушение гомеостаза в условиях гипоксии и интенсивного гликолиза; дальнейшее усиление работы кардио-респираторной системы. Значимым остается гликолитический вклад в биоэнергетику работающих мышц и выносливость нервных центров к интенсивной работе в условиях недостатка кислорода.

При работе большой мощности физиологические резервы в общем те же, что и при субмаксимальной работе, но первостепенное значение имеют следующие факторы: поддержание высокого (околопредельного) уровня работы кардиореспираторной системы; оптимальное перераспределение крови; резервы воды и механизмов физической терморегуляции. Ряд авторов энергетическими резервами такой работы считают не только аэробные, но и анаэробные процессы, а также метаболизм жиров.

При работе умеренной мощности резервами служат пределы выносливости ЦНС, запасы гликогена и глюкозы, а также жиры и процессы глюконеогенеза, интенсивно усиливающиеся при стрессе. К важным условиям длительного обеспечения такой работы относят и резервы воды и солей и эффективность процессов физической терморегуляции.

Таблица 8

Функциональные резервы при физической работе различной мощности

Мощность работы Авторы
Максимальная Субмаксимальная Большая Умеренная  
Гликолиз, АТФ, КрФ; резервы нервно-мышечной системы Буферные системы, нейрогуморальная регуляция функций по поддержанию гомеостаза Резервы кардиореспираторной системы, глюкозы, аэробных процессов и гомеостаза Резервы водно-солевого обмена, глюкозы; глюконеогенез, использование жиров А.С. Мозжухин, 1979
Запасы АТФ и КрФ Аэробно-анаэробный обмен, глюкоза Аэробно- анаэробный обмен, гликоген мышц Аэробный обмен; глюкоза крови, запасы гликогена Н.А. Степочкина, 1984
Анаэробный обмен; запасы АТФ и КрФ Анаэробный обмен, потребление кислорода Усиление функций кардиореспираторной системы, аэробный обмен Аэробный обмен, ограниченные энерготраты Н.А. Фомин, 1984
Фосфагенная энергетическая система Аэробно-анаэробный обмен, резервы кардиореспираторной системы Аэробно-анаэробный обмен, запасы глюкозы и гликогена Резервы глюкозы, гликогена; использование жиров; емкость окислительной системы Я.М. Коц, 1986
Алактатный энергетический резерв Лактатный энергетический резерв Резервы аэробно-анаэробного обмена Резервы окислительного фосфорилирования, использование жиров В. М. Калинин,

Общие сведения о резервных возможностях различных звеньев системы транспорта кислорода представлены в таблице 9. Из таблицы 9 видно, что наибольшим (двадцатикратным) резервом адаптации обладает система внешнего дыхания. Но даже при таких ее функциональных возможностях она может вносить определенный вклад в ограничение физической работоспособности спортсмена (Гандельсман А. Б., 1980; Пономарев В. П., 1981, и др.).

Аппарат кровообращения занимает особое место, поскольку явля­ется основным лимитирующим звеном транспорта кислорода. Кроме того, сердечно-сосудистая система служит тонким индикатором цены адаптации организма к различным факторам внешней среды и к физическим нагрузкам. Об этой же ее роли свидетельствуют формирование так называемого «спортивного сердца» и участившиеся в последнее время предпатологические и патологические изменения функции сердца при высоких спортивных нагрузках. К числу таких изменений можно отнести нарушения сердечного ритма, возникновение синдрома дистрофии миокарда вследствие физического перенапряжения и другие сдвиги.

Таблица 9

Предельные сдвиги в висцеральных системах при мышечной работе (по В.П. Загрядскому, 3.К. Сулимо-Самуйлло, 1976)

Показатели В покое При физической работе Кратность изменений
Частота сердечных      
сокращений в мин.
Артериальное давление,      
мм рт. ст., систолическое
Артериальное давление,      
диастолическое
Артериальное давление,      
пульсовое
Ударный объем крови, мл
Минутный объем крови, л 4.5
Артерио-венозная разница      
по кислороду, об.%
Частота дыхания в мин.
Глубина дыхания, л 0.5
Минутный объем дыхания, л
Потребление кислорода, л▪мин-1 0.25
Выделение углекислого газа,      
л•мин-1 0.2

В таблице 10 показано, что сердечно-сосудистая система обладает мощным резервом перераспределения кровотока, и по его суммарной мощности на первом месте стоит скелетная мускулатура.

Таблица 10

Распределение кровотока в покое и при физических нагрузках различной интенсивности (по Н.М. Амосову и Н.А. Брендету, 1975)

Органы Покой Физическая нагрузка
Легкая Средняя Тяжелая
Мл▪мин-1 % Мл▪миг-1 % Мл▪мин-1 % Мл▪мин-1 %
Органы брюшной                
полости
Почки
Мозг
Сердце
Скелетная                
мускулатура
Кожа
Другие органы
Итого

Среди всех органов и тканей мышцы занимают главенствующее положение по своему влиянию на центральную гемодинамику. Это объясняется большой массой скелетных мышц (около 40% массы тела) и их способностью к быстрому изменению уровня функциональной активности в широких пределах: в состоянии покоя кровоток в поперечно-полосатых мышцах составляет 15-20% от минутного объема крови (МОК), а при тяжелой работе он может достигать 80-85% от МОК.

В нашу задачу не входил анализ биохимических основ физической работоспособности спортсменов. Этой проблеме посвящены многие работы биохимиков спорта. Но есть два биохимических аспекта, без которых невозможно рассматривать физиологические резервы работоспособности человека. Во-первых, это биоэнергетическое обеспечение мышечного сокращения, которое выступает в роли резервного фактора при нагрузке различной мощности и направленности физической работы. Второй аспект – это регулирующая роль метаболитов, образующихся при мышечной деятельности, которые являются пусковым звеном (через хеморецепторы) централизации кровообращения, препятствующей нарушению тонуса сосудов. Сдвиги биохимических констант при напряженной мышечной работе (метаболический ацидоз, гипоксия и гипоксемия, гиперкапния) являются также важнейшими факторами рефлекторной и гуморальной регуляции различных звеньев кардиореспираторной системы, включая дыхательный и сосудодвигательный центры.

Все перечисленное выше функциональные резервы физической работоспособности должны рассматриваться не изолированно, а во временной, динамической взаимосвязи. Поэтому построение и тренировочного процесса и восстановительных мероприятий и реабилитации должно быть тоже динамическим и комплексным, учитывающим разнообразие адаптивных перестроек в организме спортсмена при физических нагрузках и закономерную последовательность их включения и функционирования на всех этапах его жизнедеятельности.

Наши рекомендации