Величины, подлежащие измерениям в геодезии

Исторический обзор развития геодезии

Геодезия - одна из древнейших наук (geodezy греч. в переводе на русский язык означает землеразделение). Геодезия возникла и развивалась, как и другие науки, для удовлетворения практических потребностей человеческого общества. Народы Египта, Греции, Индии, Китая, Персии, Средней Азии и других стран за несколько тысячелетий до нашей эры вели геодезические работы для строительства каналов, тоннелей, возведения сооружений, разделения земельных участков.

Первые геодезические измерения в России были выполнены в XI в. - по льду была измерена ширина Керченского пролива. Начиная с XII в. для изучения территории, создания описаний и карт, были организованы многочисленные экспедиции в Сибирь, к побережью Северного Ледовитого океана, на Дальний Восток и Камчатку, на Новую Землю.

В 1570 г. было закончено составление первой карты Московского государства, известной под названием Большого чертежа.

Работы по составлению карт получили большое развитие при Петре I. В Москве в 1701 г. началась подготовка геодезистов в школе "математических и навигационных наук".

Особую роль в развитии геодезии сыграли измерения дуги меридиана протяженностью 25°, проведенные в 1816-1831 гг. русскими геодезистами В. Я. Струве и К. И. Теннером. К концу XIX в. относятся первые гравиметрические наблюдения в России.

В 1822 г. был учрежден Корпус военных топографов, задачей которого явилось проведение геодезических и астрономических работ, топографических съемок, составление и издание карт. Им были выполнены съемки значительных по тому времени территорий преимущественно в пограничных районах Европейской части России, Крыма, Кавказа и Забайкалья.

Понятие о формах и размерах Земли: геоид, референц-эллипсоид.

Знание формы и размеров Земли необходимо во многих областях науки и техники, особенно в мореплавании, освоении природных ресурсов и укреплении обороноспособности страны...

Для характеристики фигуры и размеров Земли ближе всего подходит тело, образованное вращением эллипса вокруг малой оси. Такое тело называют земным эллипсоидом. Если эллипсоид вращения имеет наибольшую близость к фигуре Земли, а его центр, плоскость экватора и объем совпадают с земным, то он называется общим земным эллипсоидом. Земных эллипсоидов может быть получено множество, но тот из них, который принят для обработки геодезических измерений и установления системы геодезических координат в одной или нескольких странах называется референц-эллипсоидом...

Для научных и практических целей введены понятия — уровенная поверхность и геоид...

Уровненная поверхность- это поверхность морей и океанов, мысленно продолженная под материками. Геоид(уровн поверх)-это тело ограниченное уровненной поверхностью, неправильное геометрическое тело, напоминает поверхность эллипсоида. Поверхность геоида в каждой точке перпендикулярна отвесной линии.

Величины, подлежащие измерениям в геодезии.

1)Прямоугольные координаты. 2)Дирекционный угол, географический и магнитный азимут. 3)Высота точки. 4)Крутизна ската 5)вертиальный и горизонтальный угол. 6)Расстояния 7)Ориентированные углы.

5.Планы и карты.

Планом называется уменьшенные и подобные изображения небольших участков земной поверхности, без учёта кривизны земли.Планы, на которых показаны только контуры элементов местности без изображения рельефа участка, называются контурными. Если на планах наряду с ситуацией показан рельеф местности, то такие планы называются топографическими.

При изображении на бумаге значительных по площади территорий необходимо учитывать кривизну Земли. Поэтому при составлении карт на большие территории контуры местности вначале проецируют не на горизонтальную плоскость, а на сферическую поверхность земного элипсоида или шара. Полученную таким образом проекцию местности также нельзя перенести на плоскость (бумагу) в подобном и уменьшенном виде т. к. сферическую поверхность невозможно развернуть на плоскости без складок или разрывов. Поэтому для перехода от сферической поверхности всей или значительной части земной поверхности используют картографические проекции, которые можно получить аналитическим, графоаналитическим, геометрическим способами и перспективным проецированием.

Картой называется уменьшенные и подобные изображения значительных территорий с учётом кривизны земли. По содержанию географические карты принято разделять на общегеографические и тематические. На общегеографических картах предметом изображения являются физико-географические (рельеф, почвенный, растительный покров, гидрография и др.) и социально-экономические (населенные пункты, дорожная сеть, объекты хозяйственного назначения и т. п.) элементы.

В свою очередь топографические карты подразделяются на мелкомасштабные (1:100 000 – 1:200 000); среднемасштабные (1:25 000 – 1:50 000) и крупномасштабные (1:5 000 – 1:10 000).

В отличие от плана карта — это уменьшенное изображение всей поверхности Земли или отдельных ее частей на плоскости, которое построено с учетом того, что Земля является шаром. На карте масштаб в разных ее частях неодинаков, хотя не на всех картах колебания масштаба различны по своей величине. Помимо этого, на картах всегда нанесена градусная сетка (меридианы и параллели), а на планах, как правило, вычерчивают только стрелку, показывающую направление на север.

6. (4.1)Масштаб и его точность.Виды масштабов.

Степень уменьшения изображения на планах и картах контуров местности называют масштабом или отношение длины линии на плане, карте к длине горизонтального проложения соответствующей линии на местности. L-длина линии на местности, а l- длина этой линии на плане, то масштаб определяется M=l/L. Масштаб, выражаемый простой дробью с единицей в числителе 1:N (1:500) называют численным. Знаменатель дроби – число, показывающее во сколько раз уменьшены предметы при изображении их на топографических планах или картах, профилях и строительных чертежах. Измерив длину линии на плане можно определить длину горизонтального проложения на местности.

1:10000, длина отрезка l=15 мм, то в натуре он равен L=l*N=15*10000=150 м.

Поэтому отрезок в натуре, соответствующий 0.1 мм на плане называют точностью масштаба.

Численный масштаб можно выразить в виде линейного масштаба. Он представляет собой прямую линию, разделённую на равные отрезки, называемые основанием масштаба. Этот отрезок соответствует определённому числу метров горизонтального проложения в натуре. Основание принимают 2 см. Левое основание делят на 10 равных частей. Точность линейного масштаба +- 0,5 мм.

Выды масштабов: численный,именованный,графический.

Графический-это масштаб в виде графика,предназначенного для перевода длин отрезков ,измеренных на карте,в соответствующие расстояния на местности.

Именованный масштаб-это масштаб выраженный именованными числами, обозначающими длины взаимно соответствующих отрезков на карте и натуре

7. (5.1) Условные знаки планов и карт.

Условные знаки- графические обозначения предметов местности.

Площадные условные знаки: применяются для заполнения контуров природных, сельскохозяйственных угодий; они состоят из знака границ угодий- точечный пунктир или тонкая сплошная линия -и заполняющих его изображение или условной окраски.

Линейные условные знаки: показывают объекты линейного характера (дороги, реки, линии связи), длина которых выражается в данном масштабе. У знаков приводятся различные характеристики объектов.

Внемасштабные условные знаки: служат для изображения объектов, размеры которых не выражаются в масштабе карты (мосты, колодцы, геодезические пункты). У них определяют местоположение объектов.

Пояснительные условные знаки: представляют собой подписи, дающие характеристики и названия объектов. Например глубину и скорость течения рек и др.

Специальные условные знаки:устанавливают соответствующие ведомства отраслей народного хозяйства; их применяют для составления специальных карт и планов этой отрасли. Например знаки для маркшейдерских планов нефтегазовых месторождений.

8. (6.1.) Рельеф и его изображения на картах. Основные формы рельефов. Крутизна скатов

Под рельефом местности понимают совокупность неровностей земной поверхности.

На топографических планах рельеф изображется горизонталями (0,1-0,15мм) кривыми. Расстояние между соседними горизонталями по высоте называется сечением рельефа. В плане заложением для большей выразительности рельефа каждая 4-я четная по высоте 5м(сечения через 0,5) или 5-я кратная высоте h=1м горизонталь утолщается и проводится t=0,25мм и в разрыве подписывается ее высота.

Основанием цифры в сторону понижения рельефа.

Направление ската склона обозначается берх-штрихами – черточками длина черточки 0,5мм.

Для указания высот горизонталей их отметки подписывают в разрывах утолщенных 0,25мм горизонталей располагая основание цифр вниз по рельефу.

Различают следующие формы рельефа:

1). гора-куплообразная возвышенность (выше 200м)

2).Котловина (чашеобразное углубление)

Величины, подлежащие измерениям в геодезии - student2.ru

3). Хребет – возвышенность вытянутой формы с постепенным понижением имеет водораздельную линию

Величины, подлежащие измерениям в геодезии - student2.ru

4). Лощина – вытянутое углубление местности постепенно понижающиеся. Имеет водозборнную линию

Величины, подлежащие измерениям в геодезии - student2.ru

5). Сетловина – понижение местности между соседними возвышенностями

Величины, подлежащие измерениям в геодезии - student2.ru

Крутизна ската местности характеризуется углом наклона местности Величины, подлежащие измерениям в геодезии - student2.ru или уклоном Величины, подлежащие измерениям в геодезии - student2.ru . При одинаковой высоте сечения рельефа расстояние между горизонталями (заложение) тем меньше чем круче ска Величины, подлежащие измерениям в геодезии - student2.ru т

Рельеф местности изображается на топографической карте горизонталямикривыми, замкнутыми линиями, проходящими через точки местности с одинаковой высотой над уровнем моря (рис. 5). Горизонтали можно представить как последовательно зафиксированные на определенных высотах границы уровня воды, которая постепенно затопляет местность.

8. (7.1.) Чтобы правильно изобразить рельеф необходимо знать его основные формы.

Крутизна скатов.

О крутизне ската можно судить по величине заложений на карте. Чем меньше заложение (расстояние между горизонталями), тем круче скат. На рис. 12, азаложение do больше d0, поэтому скат первой линии круче.

Для характеристики крутизны ската на местности используют угол наклона u (рис. 12.б). Чем больше угол наклона, тем круче скат. Другой характеристикой крутизны служитуклон. Уклоном линии местности называют отношение превышения к горизонтальному проложению i=h/d=tgu. Из формулы следует, что уклон безразмерная величина. Его выражают в процентах % (сотых долях) или в про­милле %0 Величины, подлежащие измерениям в геодезии - student2.ru

График заложения предназначен для определения крутизны скатов. TgV=h/d; d=h/tgv; h-высота сечения

9.

Величины, подлежащие измерениям в геодезии - student2.ru Разность высот двух соседних горизонталей называется высотой сечения, а расстояние между ними вдоль проекции профиля склона — заложением. Угол между направлением ската и его заложением составляет крутизнуската. Крутизна ската определяется по расположению горизонталей. Чем круче скат, тем ближе расположены горизонтали друг к другу. Максимальная крутизна ската, изображаемая горизонталями, не превышает 45°. Скаты круче 45° изображаются условными знаками.

Чтобы определить крутизну склона местности по топографической карте, нужно помнить, что расстояние между горизонталями (заложение), равное 1°, соответствует крутизне 1° на местности. Во сколько раз заложение будет больше (меньше), во столько раз крутизна ската будет меньше (больше) 1°.

10.

В настоящее время в инженерной практике широко используются ЭВМ, позволяющие автоматизировать процессы изысканий, проектирования и строительства сооружений.

Использование ЭВМ.потребовало применения не только принципиально новой методики решения задач изыскания и проектирования, но и новых форм хранения информации о топографии местности.

В памяти ЭВМ данные о местности должны быть представлены в цифровой форме, например в виде координат X, У, Я некоторого упорядоченного множества точек земной поверхности. Такое множество точек с их координатами образует цифровую модель местности.

Цифровая модель местности должна давать информацию о контурах и рельефе местности в объеме, достаточном для решения определенной задачи, и вместе с тем не загромождать память машины.

Под цифровой моделью рельефа будем понимать некоторое количество точек с координатами X, Y,Z, выбранных на топографической поверхности таким образом, чтобы путем линейного интерполирования получить отметки других точек с требуемой точностью.

Выбор точек, характеризующих топографическую поверхность местности, является наиболее сложным элементом построения ЦМР. Критериями такого выбора являются характер рельефа местности (равнинный, всхолмленный, моренный и т. д.) и точность получения на модели высот, диктуемая условиями конкретно решаемой инженерной задачи. Поэтому существует трудность создания универсальной модели и возможность построения моделей, отвечающих как условиям решения поставленной задачи, так и характеру рельефа топографической поверхности.

11.(9.1)РАЗГРАФКА И НОМЕНКЛАТУРА ТОПОГРАФИЧЕСКИХ ПЛАНОВ И КАРТ.

Для решения различных вопросов практики требуются карты и планы различных масштабов. Для удобства пользования многолистными картами вся земная поверхность делится на части меридианами и параллелями в единой системе. Система условного обозначения (буквами и цифрами) листов, планов и карт различных масштабов называется – номенклатурой карт. Основой номенклатуры составляет карта в масштабе 1:1000000. Для листа такой карты принят участок земной поверхности в 4° по широте (ряды) и 6° по долготе (колонны). Земная поверхность изображена картами 1:1000000 полученными разделением на 60 полос меридианами и на 22 пояса, называемых рядами. Каждая из полос, ограниченная меридианами, называется колоннами. Они нумеруются от восточного меридиана цифрами от 1 до 60°. Протяжённость колонны по долготе = 6°. Каждый пояс ограничивается параллелями и обозначается заглавными латинскими буквами от A до V, начиная от экватора к северному полюсу. Чтобы устранить неудобства, возникающие на стыке карт двух зон, на рамках карт наносят дополнительную сетку, являющуюся продолжением сетки соседней зоны. Оцифровка дополнительной сетки наносится за внешней рамкой карты.

Листы карты М 1:1000000 делятся на:

4 листа карты М 1:500000, обозначаемых заглавными буквами А, Б, В, Г;

На 36 листов карты М 1:200000 (I-XXXVI);

Основное деление на 144 листа карты М 1:100000 (1-144). Лист карты М 1:100000 является основой для карт в более крупном масштабе 1:50000; 1:25000; 1:10000 (А, Б, В, Г; а, б, в, г; 1, 2, 3, 4…). Для топографических планов и карт листа М 1:100000 делится на 256 частей (1-256). Для М 1:2000 каждый лист масштаба 1:5000 делится на 9 частей и обозначается маленькими русскими буквами.9.2 Измерение горизонтальных углов

Существ способы измерения горизонт углов: 1. Способ приёмов – примен, когда из вершины измеряемого угла выходит не более 2 направлений.

АВ, АС – стороны измеряемого угла. Правый угол – если от В к С. Левый угол – от С к В. Точка В – правая задняя, С – левая передняя. В точку А ставим теодолит и приводим его в рабоч положение. закрепляем лимб, открепляем алидаду, зрительную трубу наводим на точку В. По горизонтальн кругу теодолита берём отсчёт в1 (произвольный). Открепляем алидаду и зрит трубу наводим на точку С и берём отсчёт с1. Это измерение выполненное при одном положении теодолита называется полуприёмом. β111 – угол в полуприёме. 2. Способ круговых приёмов. Применяют, когда из вершины угла выходит несколько направлений. 01 – начальное направление, а1 = 0°05'. На лимбе устанавливают отсчёт, близкий к 0. Закрепляем алидаду, открепляем лимб и выбираем начальное направление и с этим отсчётом наводим зрит трубу на нач направление. Закрепляем лимб, открепляем алидаду и зрит трубу по ходу часовой стрелки наводим на все точки.

Берём отсчёты а12,…,а6 и повторно наводим на нач точку а1 => а1'. трубу проводим через зенит, открепляем алидаду, 3-ий раз наводим на начальную точку и берём отсчёт а1''. Теодолит поворачиваем против хода часовой стрелки и снимаем отсчёт => в нач точке а1'''. Углы вычисляем как разность отсчётов по сторонам углов. 3. Способ повторения. Над точкой устанавливают теодолит. На лимбе устанавлив отсчёт, близкий к 0. (аллидада откреплена). Открепляем лимб, прикрепляем алидаду и этим отсчётом наводим на точку А, открепляем алидаду и зрит трубой наводим на 2 точку, берём контрольный отсчёт Ак. N – число повторений. Β = (А – А1 + N 360°) / 2N.

12. (10.1)Системы координат: географическая, плоская прямоугольная, полярная.

Координаты— числа, определяющие положение точки земной поверхности относительно начальных (исходных) линий или поверхностей. В инженерной геодезии наи­большее применение получили системы географических, прямоугольных, и полярных координат.

Система полярных координат

Эту систему применяют при определении планового положения точек на небольших участках в процессе съемки местности и при геодезических разбивочных ра­ботах.За начало координат — полюс принимают точку О местности, за начальную координатную ли­нию — полярную ось ОА, произвольно расположенную на местности. Полярными координатами точки Мбудут полярный угол бета, отсчитываемый по часовой стрелке от полярной оси и полярное расстояние (радиус-вектор)OM-S

Наши рекомендации