Предмет и задачи геодезии. Роль геодезии в строительстве

Предмет и задачи геодезии. Роль геодезии в строительстве

Геодезия - наука, которая занимается изучением формы и размеров Земли или отдельных ее частей. Это изучение осуществляется посредством геодезических измерений. Такие измерения производятся на поверхности Земли, на море и в космосе. Геодезические измерения нужны для определения фигуры и размеров земли, составления планов, карт и профилей, для решения различного рода инженерных задач при изысканиях» проектировании, строительстве и эксплуатации инженерных сооружений.

Высшая геодезия изучает фигуру, размеры и гравитационное поле Земли, обеспечивает распространение принятых систем координат и высот в пределах государства, изучает вертикальные и горизонтальные деформации земной коры, а также изучает фигуру, размеры и гравитационное поле других планет солнечной системы.

Геодезия илитопография занимается изображением на планах и картах земной поверхности, а также измерением относительных высот точек земной поверхности и изображением вертикальных ее разрезов.

Инженерная геодезия изучает методы и средства проведения геодезических работ при изысканиях, проектировании, строительстве и эксплуатации инженерных сооружений,

Маркшейдерия (подземная геодезия) изучает методы проведения геодезических работ в подземных горных выработках.

Фототопография изучает методы создания топографических карт и планов по материалам фотографирования земли.

Картография изучает методы составления, издания и использования карт, атласов.

За последние годы получили развитие новые разделы геодезии; радиогеодезия, космическая геодезия и морская геодезия.

Радиогеодезия занимается изучением радиоэлектронных методов измерения расстояний при помощи радио и светолокаций, соответственно, приборами радиодальномером и светодальномером.

Космическая геодезия занимается обработкой измерений, полученных при помощи искусственных спутников земли, орбитальных станций и межпланетных кораблей.

Морская геодезия занимается вопросами топографо-геодезических работ морского дна.

Геодезические работы на строительной площадке относятся к числу первоочередных в общем комплексе изысканий. На основе полученного в результате съемки топографического плана крупного масштаба разрабатывается генеральный план строительной площадки, на котором проектируют здания, сооружения, транспортные пути, инженерные сети и др. Не менее важное значение приобретает топографический план при проектировании строительного генерального плана, на котором намечают весь комплекс вспомогательных и временных зданий и сооружений. Топографический план служит, кроме того, исходным материалом для составления рабочих чертежей вертикальной планировки, архитектурно-строительных чертежей зданий, сооружений и различных инженерных сетей.

Для перенесения проектов зданий и сооружений на местность используют геодезическую основу, созданную на строительной площадке в виде полигонометрической сети или строительной сетки. От пунктов геодезической основы разбивают на местности положение главных осей зданий и сооружений, от которых затем производят детальную разбивку частей зданий

План, карта, профиль

Планом называется чертеж, изображающий в уменьшенном и подобном виде горизонтальное проложение участка местности без учета кривизны земной поверхности. Размер площади, которую можно изобразить на плане не выходя за пределы заданной точности, определяется формулами:

План без съемки рельефа r=корень(3R^2дl)

План со съемкой рельефа r=корень(2R^2дh)

где R - радиус земного шара (6380 км); дlи дh- заданная точность точек опорной сети по горизонтальному проложению и по высоте;r- радиус круга, в пределах которого обеспечивается заданная точность

Планы бывают контурными и топографическими. На контурных планах изображают только контуры горизонтальных проекций местных предметов. Совокупность местных предметов, нанесенных на план, называют ситуацией плана. На топографических планах, кроме ситуации, условными знаками изображают рельеф местности.

Картой называют чертеж, изображающий в уменьшенном и обобщенном виде всю поверхность земли или значительную ее часть в специальной картографической проекции с учетом кривизны земли. На карте при помощи условных знаков показывают размещение и связи различных предметов и явлений, а также их качественные и количественные характеристики.

Профили местности представляют собой уменьшенное изображение вертикального разреза земной поверхности вдоль выбранного или заданного направления. Они являются топографической основой при составлении проектно-технической документации, необходимой при строительстве подземных и наземных трубопроводов, дорог и других коммуникаций.

Масштабы, виды, точность

Степень уменьшения изображения на планах и картах контуров местности называют масштабом или отношение длины линии на плане, карте к длине горизонтального проложения соответствующей линии на местности. L-длина линии на местности, а l- длина этой линии на плане, то масштаб определяется M=l/L. Масштаб, выражаемый простой дробью с единицей в числителе 1:N (1:500) называют численным. Знаменатель дроби – число, показывающее во сколько раз уменьшены предметы при изображении их на топографических планах или картах, профилях и строительных чертежах. Измерив длину линии на плане можно определить длину горизонтального проложения на местности.

1:10000, длина отрезка l=15 мм, то в натуре он равен L=l*N=15*10000=150 м.

Поэтому отрезок в натуре, соответствующий 0.1 мм на плане называют точностью масштаба.

Численный масштаб можно выразить в виде линейного масштаба. Он представляет собой прямую линию, разделённую на равные отрезки, называемые основанием масштаба. Этот отрезок соответствует определённому числу метров горизонтального проложения в натуре. Основание принимают 2 см. Левое основание делят на 10 равных частей. Точность линейного масштаба +- 0,5 мм.

Для измерения длин линий на топографических материалах (с точностью масштаба) пользуются поперечным масштабом. Для его построения на прямой откладывают основния масштаба, из концов которых выставляют перпендикуляры; левое верхнее и нижние основания делят на 10 равных частей и соответствующие точки соединяют прямыми. Наименьшее деление поперечного масштаба равно сотой доле основания. По масштабу с основанием 10 мм можно определить длины отрезков с точностью 0,1 мм.

9. Условные знаки планов и карт

Планом называется уменьшенные и подобные изображения небольших участков земной поверхности, без учёта кривизны земли. Картой называется уменьшенные и подобные изображения значительных территорий с учётом кривизны земли. Ситуация-совокупность предметов элементов и контуров местности. Рельеф- совокупность неровностей земной поверхности. Условные знаки- графические обозначения предметов местности.

Площадные условные знаки: применяются для заполнения контуров природных, сельскохозяйственных угодий; они состоят из знака границ угодий- точечный пунктир или тонкая сплошная линия -и заполняющих его изображение или условной окраски.

Линейные условные знаки: показывают объекты линейного характера (дороги, реки, линии связи), длина которых выражается в данном масштабе. У знаков приводятся различные характеристики объектов.

Внемасштабные условные знаки: служат для изображения объектов, размеры которых не выражаются в масштабе карты (мосты, колодцы, геодезические пункты). У них определяют местоположение объектов.

Пояснительные условные знаки: представляют собой подписи, дающие характеристики и названия объектов. Например глубину и скорость течения рек и др.

Специальные условные знаки:устанавливают соответствующие ведомства отраслей народного хозяйства; их применяют для составления специальных карт и планов этой отрасли. Например знаки для маркшейдерских планов нефтегазовых месторождений.

Способы линейных измерений

Способы измерений: - непосредственный

- косвенный

Выбор способа зависит от: - условий измерения

- вида геодезических работ

- требуемой точности

Приборы для непосредственных измерений:

1. Землемерная лента А3-20, А3-50

2. Шкаловая землемерная лента. На кончиках есть сантиметровые деления и метровые.

ЛЗШ-20, ЛЗШ-50

3. Рулетки (металлические, на основе стекловолокна, пластик)

4. Инварная проволка

Компарирование- определение действительной длины мерного прибора путём сравнения с эталоном. Компараторы- отрезок закреплённый на местности или в помещении. Длина которого измеряется с высокой точностью. L=Lэт-Lпр

Порядок линейных измерений:

1. Закрепление точек.

2. Вещение линий- установка дополнительных вешек в створе измерений линий.

3. Измерение расстояний в прямом и обратном направлении.

Д=Lпр*n+r, где n-количество уложений прибора; r-остаток.

Дср=Дпр/2+Добр/2

Оценка точности сделанных измерений . Точность оценивается относительной погрешностью. Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru =Дср-Добр –абсолютная погрешность

fотн= Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru /Дср=1/N

Допускаются относительные погрешности:

1. ЛЗ 1/1000 1/3000; 2. ЛЗЩ, РУЛ 1/3000 1/10000; 3 инварная проволка 1/100; 4. светодальномер 1/107.

18. Факторы, влияющие на точность измерения углов

При проведении измерений важным фактором является среда, в которой они проводятся. Негативно влияют:

-плохие погодные условия (осадки, ветер, туман, высокая температура)

-нестандартное местоположение объекта (болота, запруды, высокогорье)

-наличие технических средств, порождающих вибрации (соседство с железными дорогами, метро, гидроэлектростанциями и др.)

-присутствие вредоносных животных

-зимнее время, когда температура держится около нуля градусов

Нивелирование и его виды

Нивелирование– определение высот точек земной поверхности относительно исходной точки («нуля высот»). За исходный уровень отсчета высот в России принят средний уровень Балтийского моря- нуль Кронштадтского футштока (Балтийская система высот).

Нивелирные сети подразделяются на государственные и ведомственные (маркшейдерские, на строительных площадках и т. п.). Под государственной нивелирной сетьюпонимают систему размещенных на всей территории страны надежно закрепленных на местности геодезических пунктов (реперов), высоты которых определены в единой системе от одного исходного пункта, принятого за начало отсчета высот.

Государственная нивелирная сеть строится по принципу «от общего к частному» и делится на четыре класса: I, II, III и IV. Сети I и II как наиболее точные предназначены для распространения единой системы высот на территорию страны. I и II классы относят к высокоточному нивелированию, III и IV классы – к точному и являются сетями сгущения.

Методы нивелирования

Существуют следующие методы нивелирования:

- геометрическое нивелирование, при котором превышение между точками получают как разность отсчетов по рейке при горизонтальном положение визирной оси;

- тригонометрическое нивелирование, когда превышение между точками определяют по измеренным вертикальным углам и расстояниям между точками, т. е. нивелирование наклонным визирным лучом;

- барометрическое нивелирование, основанное на использовании зависимости между атмосферным давлением и высотой точек на местности;

- гидростатическое нивелирование, основанное на свойстве жидкости в сообщающихся сосудах находиться на одном уровне.

Самым точным и распространенным является геометрическое нивелирование.

Нивелирование из середины.

При нивелировании из середины нивелир устанавливают посредине между точками А и В, а на точках А и В ставят рейки (рис. 1). При движении от точки A к точке B рейка в точке А называется задней, рейка в точке В - передней. Сначала наводят трубу на заднюю рейку и берут отсчет a, затем наводят трубу на переднюю рейку и берут отсчет b. Превышение точки B относительно точки А получают по формуле:

h = a - b.

Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru

Рис. 1 Рис. 2

Контролем нивелирования на станции по способу из середины является определение превышения с использованием черной и красной сторон реек:

hч= aч– bч

hк=aк–bк.

Если hч-hкI≤ 4 мм, то за окончательное значение принимаем среднее арифметическоеhср= (hч+hк)/2.

Если a > b, превышение положительное, если a < b - отрицательное. Отметка точки В вычисляется по формуле:

Hв= Hа+ hср.

Высота визирного луча над уровнем моря называется горизонтом прибора и обозначается Hг:

ГП = HА+ a = HВ+ b.

Нивелирование вперед.

При нивелировании вперед нивелир устанавливают над точкой А так, чтобы окуляр трубы был на одной отвесной линии с точкой. На точку В ставят рейку. Измеряют высоту нивелира i над точкой А и берут отсчет b по рейке (рис.2). Превышение h получают по формуле:

h = i - b.

При способе вперед для контроля нивелир поднимают или опускают на несколько сантиметров, при этом высота прибора и отсчет изменится

h,= i,- b,

Если Ih–h,I≤ 4 мм, то за окончательное значение принимаем среднее арифметическоеhср= (h+h,)/2.

Отметку точки B можно вычислить через превышение по формуле или через горизонт прибора:

Hв= ГП - b.

20. Геометрическое нивелирование . Способы его выполнения.

Геометрическое нивелирование – это наиболее распространенный способ определения превышений. Его выполняют с помощью нивелира, задающего горизонтальную линию визирования.

Устройство нивелира достаточно простое. Он имеет две основные части: зрительную трубу и устройство, позволяющее привести визирный луч в горизонтальное положение.

Геометрическое нивелирование можно выполнять по следующей схеме:

Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru Рис. 61. Способы нивелирования

При нивелировании из середины нивелир располагают между двумя точками примерно на одинаковых расстояниях (рис.61, а). В точках устанавливают отвесно рейки с сантиметровыми делениями. Их ставят на колышек, вбитый вровень с землей, или на специальный костыль, так как рейка под собственной тяжестью будет давить на землю и отсчет по ней будет меняться. Визирный луч зрительной трубы нивелира последовательно наводят на рейки и берут отсчеты З и П, которые записывают в миллиметрах в журнал нивелирования. Отсчет по рейке производят по средней нити нивелира, т.е. по месту, где проекция средней нити пересекает рейку. Превышение между точками определяют по формуле

h = З – П

где З – отсчет назад на заднюю точку А; П – отсчет вперед на переднюю точку B.

При нивелировании вперед прибор устанавливают над точкой А (рис. 61, б), измеряют его высоту V и берут отсчет П по рейке в точке В. Превышение определяют вычитанием из высоты прибора V отсчета П.

h = V – П.

Высоту передней точки В вычисляется по формуле:

Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru

Высоту визирного луча на уровенной поверхностью называют горизонтом инструмента HГИ (рис. 61) и вычисляют

НГИ = НА + З = НА + V.

Место установки нивелира называется станцией. Если для определения превышения между точками А и В достаточно установить прибор один раз, то такой случай называется простым нивелированием.

Если же превышение между точками определяют только после нескольких установок нивелира, такое нивелирование называютсложным или последовательным(рис. 62).

Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru

Рис. 62. Последовательное нивелирование.

В этом случае точки С и D называют связующими. Превышение между ними определяют как при простом нивелировании:

Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru

Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru ; Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru ; Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru

h = ∑З – ∑П

Такую схему нивелирования называют нивелирным ходом.

21. Устройство и классификация нивелиров

ивелир – это геодезический прибор для определения превышений и высот (отметок) точек с помощью горизонтального луча визирования и вертикально устанавливаемых реек способом геометрического нивелирования.

Согласно действующему стандарту нивелиры по точности выпускают т р е х т и п о в:

а) высокоточные (Н-05);

б) точные (Н-3);

в) технические (Н-10).

Цифры в шифре нивелира указывают среднюю квадратическую погрешность измерения превышения в миллиметрах на 1 км двойного нивелирного хода. Например, для нивелира Н-3 средняя квадратическая погрешность составляет 3мм на 1км хода.

В зависимости от способа получения горизонтального луча визирования каждый из трех типов нивелиров изготавливается в двух вариантах:

– с цилиндрическим уровнем при зрительной трубе;

– с компенсатором, позволяющим автоматически приводить ось визирования зрительной трубы нивелира в горизонтальное положение.

В настоящее время выпускаются нивелиры улучшенной конструкции 2-го и 3-го поколений, например 2Н-10КЛ, 3Н-3ЛП. Первая цифра обозначает поколение. При наличии компенсатора в шифр прибора добавляется буква К. Если нивелир изготовлен с лимбом для измерения горизонтальных углов, то еще добавляется буква Л. Если нивелир имеет зрительную трубу прямого изображения, то в шифр добавляется буква П.

В таблице 7.1 приведены технические характеристики некоторых типов нивелиров используемых в настоящее время.

Т а б л и ц а 7.1 – Технические характеристики нивелиров

Параметр Марка нивелира
Н-05 Н-3 Н-3К Н-10Л Н-10КЛ 3Н-5Л
Увеличение зрительной трубы, крат            
Наименьшее расстояние визирования, м       1,5 1,5 1,2
Цена деления цилиндрического уровня, секунды дуги        
Цена деления круглого уровня, минуты дуги            
Чувствительность компенсатора, секунды дуги 0,4 1,0
Масса прибора, кг     2,5 1,7 1,5 1,4

Устройство и поверки нивелира (с цилиндрическим уровнем). Нивелир Н-3 относится к приборам с цилиндрическим уровнем при зрительной трубе (рисунок 7.9). Для установки нивелира в рабочее положение его закрепляют на штативе и, действуя тремя подъемными винтами, приводят пузырек круглого уровня в центр ампулы. При этом ось вращения нивелира занимает отвесное положение. Наведение зрительной трубы на рейку осуществляют вначале вручную с помощью визира, а затем зажимают закрепительный винт зрительной трубы и наводящим винтом выполняют точное визирование на рейку. Резкость изображения сетки нитей достигается вращением окулярного кольца, а резкость изображения рейки – вращением винта кремальеры.

Перед каждым отсчетом по рейке визирную ось нивелира приводят в горизонтальное положение, добиваясь совмещения изображения концов пузырька цилиндрического уровня в поле зрения зрительной трубы путем вращения элевационного винта (рисунок 7.10).

Отсчет по рейке состоит из четырех цифр и выражает величину в миллиметрах. Выполняют отсчет по среднему горизонтальному штриху сетки нитей. Отсчет по рейке берут от меньшего к большему числу. Первые две цифры отсчета, обозначающие метры и дециметры на рейке подписаны (на рисунке 7.10 это цифры 06), третья цифра считается по числу сантиметровых шашек от начала дециметрового деления до среднего горизонтального штриха сетки нитей (на рисунке 7.10 их 5). Следует отметить, что в каждом дециметре первые пять шашек с сантиметровыми делениями объединены в виде буквы Е (см. рисунок 7.10). Четвертая цифра, обозначающая миллиметры, по рейке оценивается на глаз (на рисунке 7.10 это 2 мм). Тогда полный отсчет по рейке составит 0652.

 
  Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru
Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru
Рисунок 7.9 – Нивелир Н-3: 1 – подъемный винт; 2 – подставка; 3 – круглый уровень; 4 – элевационный винт; 5 – кремальера; 6 – зрительная труба; 7 – цилиндрический уровень; 8 – визир; 9 – закрепительный винт; 10 – пластина; 11 – наводящий винт Рисунок 7.10 – Поле зрения зрительной трубы нивелира Н-3: 1 – изображение концов пузырька цилиндрического уровня; 2 – средний горизонтальный штрих сетки нитей; 3 – штрихи нитяного дальномера; 4 – изображение рейки (отсчет 0652)

22. Порядок определения превышения на станции

При геометрическом нивелировании порядок работы следующий. Допустим, что нам нужно определить превышение между точками А и Б. Забиваем в этих точках колышки до земли и сторожки рядом с ними. Устанавливаем на колышки рейки нулями вниз. Между ними на равном расстоянии от каждой ставим треногу с нивелиром. Приводим его в рабочее состояние при помощи круглого уровня. Для этого круглый уровень располагаем между двумя подъёмными винтами и, вращая их одновременно в разные стороны, добиваемся, чтобы пузырёк оказался между винтами. Третьим подъёмным винтом вводим пузырёк в центр малого круга. Наводим по мушке визирную трубу на заднюю рейку. Окулярным кольцом наводим резкость сетки нитей. Кремальерным винтом наводим резкость рейки. Глядя сбоку в прорезь цилиндрического уровня, элевационным винтом приводим цилиндрический пузырёк на середину. Глядя в окуляр, в левом углу поля зрения элевационным винтом выравниваем обе половинки пузырька. Берём отсчёт по чёрной стороне задней рейки. Отсчёт ведётся сверху вниз от начала Е образного символа до средней горизонтальной нити сетки в мм. Записываем его в журнал. Поворачиваем зрительную трубу на переднюю рейку и берём по ней отсчёт. Записываем его в соответствующую колонку журнала. Вычисляем чёрное превышение, отняв от заднего отсчёта передний и записываем его в журнал в колонку превышений. Для контроля поворачиваем рейки красными сторонами и повторяем вышеописанную операцию. Записываем красное превышение под чёрным. Если разница между ними не превышает 6 – 8 мм, то вычисляем среднее.

Рис. 46 План-проект подъездного пути

Для перенесения этого проекта в натуру необходимо выполнить геодезическую подготовку, т. е. определить:

1) расстояние аb по главной магистрали от километрового столба А до точки В– примыкания подъездного железнодорожного пути;

2) расстояние ВС от точки примыкания В до точки С поворота оси;

3) расстояние СD от точки С до конечной точки D дорожного пути.

Расстояния на карте измеряют при помощи поперечного масштаба, а углы β1 и β2 поворота оси в точках B, С и дирекционные углы оси измеряют транспортиром.

По измеренным на карте дирекционным углам вычисляют магнитные азимуты соответствующих линий:

АМ = α – δ + γ,

где α – дирекционный угол, измеренный на карте;

δ – склонение магнитной стрелки;

γ – сближение меридианов.

Углы δ и γ приводятся на карте за рамками планшета.

Разбивка в натуре оси инженерного сооружения начинается с определения на местности начальной точки В примыкания подъездного пути, для чего от километрового столба А или пункта главной линии отмеряют стальной лентой проектное расстояние АВ в направлении оси основной магистрали (рис. 46).

Точку В в натуре закрепляют деревянным временным колышком, устанавливают над ней теодолит и откладывают проектный угол β1. Затем, грубо проверив буссолью теодолита по магнитному азимуту правильность направления на пункт С, провешивают теодолитом это направление. Отложив от точки В проектное расстояние ВС, забивают второй временный колышек в точкеС, переносят на нее теодолит и откладывают угол β2, поверяя направление на точку буссолью. Затем откладывают стальной лентой расстояние CD и закрепляют конечную точку D временным колышком.

Если расстояние между точкой D и проектными сооружениями, к которым прокладывается дорога, не превышает расхождений, заданных техническими условиями, то поворотные точки B,С, D считаются окончательными и в этих точках устанавливаются деревянные столбики. До разбивки пикетажа на столбиках подписей не делают. После закрепления трассы на местности производят разбивку пикетажа, поперечников и главных точек кривых закруглений. Разбивку пикетажа начинают с нулевого пикета, установленного в начальной точке, например у километрового столба А. Пикеты устанавливают через каждые100 м .

В характерных местах рельефа между пикетами забивают плюсовые точки.

В точках поворота трассы на ранее установленных столбиках подписывают: номер предыдущего пикета, расстояние от него и величину угла поворота, который повторно измеряют теодолитом.

При разбивке пикетажа ведется пикетажная книжка (рис. 47), в которую заносят результаты съемки по обе стороны от оси на расстоянии 20 – 30 м в зависимости от характера инженерного сооружения.

Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru

Рис. 47. Страница пикетажной книжки

Съемка ведется методом ординат, за ось Х принимается ось трассы. Перпендикуляры опускаются на ось Х из характерных точек контуров при помощи двузеркального эккера, длина их измеряется рулеткой. Для удобства ведения абриса в заданном масштабе пикетажная книжка делается из миллиметровой бумаги.

Одновременно с пикетажем разбивают поперечные профили (поперечники), перпендикулярные к оси трассы. Длина поперечников от 20 до 50 м, а расстояния между ними берутся такие, чтобы поверхность земли между соседними поперечниками имела одинаковый скат. Характерные точки поперечников закрепляются. Разбивка поперечников производится рулеткой.

4.3.2.2.Разбивка кривой закругления

При изменении направления линии по трассе (см. рис. 46) в точках В и С ось дорожного сооружения должна проходить по кривой, называемой закруглением. Разбивка кривой заключается в закреплении на местности при разбивке пикетажа главных точек закругления: НК, СК и КК, т. е. начало, середина и конец кривой соответственно. Для этого необходимо рассчитать элементы кривой закругления: Т = AB – тангенс, К = ADC – кривую, Б = BD – биссектрису и Д = 2T – K – домер.

Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru На рис. 48 из прямоугольного треугольника ОАВ следует, что Т = 2R·tg Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru . Из соотношения Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru длина кривой Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru . Биссектриса Б=OB – OD= Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru .
Рис. 48. Элементы кривой закругления  

Аэрофотосъемка

Аэрофотосъемка - это комплекс работ, включающий различные процессы от фотографирования земной поверхности с летящего самолета до получения аэрофотоснимков, фотосхем или фотопланов снятой местности. В него входят:

1. подготовительные мероприятия, заключающиеся в изучении местности, которая подлежит фотографированию, подготовке карт, проектированию маршрутов полетов самолета и в производстве расчета элементов аэрофотосъемки;

2. собственно летно-съемочные работы или фотографирование земной поверхности при помощи аэрофотоаппаратов;

3. фотолабораторные работы по проявлению снятой пленки и изготовлению позитивов;

4. геодезические работы по созданию на местности геодезической основы, которая необходима для исправления искажений аэроснимков, возникших в процессе аэрофотосъемки, привязки аэроснимков и для составления фотосхем и фотопланов;

5. фотограмметрические работы, которые проводятся как в полевом, так и в камеральном периодах и связаны с обработкой аэрофотоснимков для составления планов и карт снятой местности.

Все эти процессы тесно связаны один с другим и отчасти взаимно перекрываются. Аэрофотосъемка каждого объекта должна выполняться одной и той же организацией от начала до сдачи окончательной продукции. В результате проведения этих работ изготовляются контактные отпечатки, репродукции с накидного монтажа аэрофотоснимков, фотосхемы или фотопланы, составленные по данным геодезической

основы. Все эти так называемые аэрофотосъемочные материалы используются в дальнейшем для решения целого ряда вопрос ов в области лесного хозяйства и лесной промышленности.

Исполнительные съемки

Основное назначение исполнительных съемок – установить фактическое положение элементов и конструкций относительно осей и проектных отметок, а также – определение размеров и положения зданий и сооружений на местности после возведения. Это достигается путем определения фактических координат характерных точек построенных сооружений, размеров их отдельных элементов и частей, расстояний между ними и других данных. Исполнительные съемки ведутся в процессе строительства по мере окончания его отдельных этапов и завершаются окончательной съемкой готового сооружения. В первом случае выполняют текущие исполнительные съемки, во втором – съемки для составления исполнительного генерального плана.

Текущиеисполнительные съемки отражают результаты последовательного процесса возведения отдельного здания или сооружения, начиная с котлована и заканчивая этажами гражданских и технологическим оборудованием промышленных зданий. Отчетными документами текущих исполнительных съемок являются исполнительные чертежи котлованов, фундаментов, схемы положения колонн, подкрановых путей, поэтажные чертежи и т.д. Они содержат данные для корректировки выполненных на каждом этапе работ и обеспечения качественного монтажа сборных конструкций и их частей.

Окончательнаяисполнительная съемка выполняется для всего объекта в целом и используется при решении задач, связанных с его эксплуатацией, реконструкцией и расширением. При окончательной съемке используются материалы текущих съемок, а также съемок подземных и надземных коммуникаций, транспортных сетей, элементов благоустройства и вертикальной планировки. По результатам этой съемки составляют исполнительный генеральный план.

Исходной геодезической основойдля текущей исполнительной съемки служат пункты разбивочной сети, знаки и створы закрепления осей или их параллелей, установочные риски на конструкциях. Высотной основой служат реперы строительной площадки и отметки, фиксированные на строительных конструкциях. Геодезическим обоснованием съемки для составления исполнительного генерального плана служат пункты и реперы государственных и разбивочных сетей.

Методы измеренийпри исполнительной съемке те же, что и при выполнении разбивочных и съемочных работ. Для съемки положения строительных конструкций в плане применяют способы прямоугольных и полярных координат, линейных и створных засечек (допустимая ошибка – 10 мм), по высоте – геометрическое нивелирование (точность – 5 мм). Отклонение конструкций от вертикали проверяют с помощью отвесов, теодолитов, приборов вертикального визирования. Методы съемки для исполнительного генплана зависят от масштаба его составления и вида снимаемого объекта. В большинстве случаев применяют тахеометрический метод.

Исполнительной съемке подлежат части зданий и конструктивные элементы, от точности положения которых зависит точность выполнения работ на последующих этапах, а также прочность и устойчивость здания в Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru целом.

На этапе нулевого цикла исполнительную съемку выполняют после устройства котлована, свайного поля, сооружения фундамента, стен и перекрытий технического подполья. При устройстве котлована съемку производят после зачистки дна и откосов. При этом определяют относительно осей внутренний контур, а нивелированием по квадратам – отметки дна.

Для свайного поля путем перенесения осей на оголовки определяют положение свай в плане и нивелированием оголовков – по высоте.

Предмет и задачи геодезии. Роль геодезии в строительстве - student2.ru

Общие сведения о деформациях зданий и сооружений. Под воздействием окружающей среды и нагрузок от эксплуатации оборудования, а также от других причин с течением времени здания могут изменять свое положение, как в вертикальной, так и в горизонтальной плоскости. Такие изменения в ряде случаев могут приводить к перекосам, прогибам, трещинам и кренам конструкций. Если эти изменения не будут во время обнаружены и устранены, то здание или сооружение может разрушиться. В этой связи за положением зданий и сооружений в процессе эксплуатации необходимо вести натурные наблюдения с проведением необходимых геодезических измерений. Кроме наблюдений за состоянием строительных конструкций, в ряде случаев необходимо наблюдение за положением технологического оборудования в процессе его эксплуатации. Смещение здания, сооружения или оборудования в вертикальной плоскости называется осадкой, а соответствующее горизонтальное смещение – сдвигом. При равномерных осадках все точки здания или сооружения перемещаются в вертикальном направлении на одну и ту же величину, что не существенно влияет на их прочность и устойчивость. В тех случаях, когда свойства грунта под фундаментом здания сильно зависят от координаты, или нагрузка на грунт по координатам фундамента сильно изменяется, осадка может иметь неравномерный характер, что приводит к заметным деформациям здания, появлению трещин или разломов. Наблюдения за деформациями зданий и сооружений необходимо проводить в первые годы эксплуатации и до их стабилизации. При этом необходимо установить периодический цикл наблюдений. В течение этого цикла наблюдения надлежит выполнять через равные промежутки времени в зависимости от скорости осадок. При снижении скорости осадок интервал между повторными наблюдениями может быть увеличен.

Размещение реперов и марок для наблюдений за осадками. Для наблюдений за осадками зданий необходимо иметь систему определенных точек, закрепленных специальными постоянными нивелирными знаками. Эти точки являются фундаментальными глубинными реперами, закладываемыми в стороне от сооружения, где их сохранность и неизменность геометрического положения в системе геодезических координат не вызывают сомнений в течение длительного времени. В районе наблюдений за осадками зданий должны быть установлены не менее трех глубинных реперов с учетом возможного обеспечения контроля их высотного положения с одной постановки нивелира. Глубинные фундаментальные реперы для наблюдений особо ответственных сооружений устанавливаются при измерении осадок нивелированием 1 класса. При измерении осадок нивелированием II и III классов можно использовать реперы, расположенные в грунте ниже уровня его промерзания. Наиболее распространенными типами грунтовых реперов являются трубчатые реперы, или забитые в грунт сваи. Верхняя часть трубчатого репера или сваи должна иметь сферическую головку. Кроме грунтовых реперов для наблюдений за осадками зданий необходимы так называемые контрольные осадочные марки, которые закладываются в стены сооружения и перемещаются вместе с ними. По наблюдениям за положением марок можно опреде

Наши рекомендации