Основной закон динамики вращательного движения твердого тела относительно неподвижной оси

. где – момент силы, – момент инерции тела, – угловая скорость, – момент импульса.В случае постоянного момента инерции тела – , где угловое ускорение.

18. Кинетическая энергия вращающегося твёрдого тела.Рассмотрим вращение тела вокруг неподвижной оси, которую назовем осью Z (рис.). Линейная скорость точки с массой mi, равна vi = ωR, где R, —расстояние точки до оси Z. Для кинетической энергии i-й материальной точки тела получаем выражение:

.

Кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек па которые это тело можно разбить:

где - момент инерции тела относительно оси вращения.

В общем случае движение твердого тела можно представить в виде суммы двух движений - поступательного со скоростью, равной скорости центра инерции тела, и вращения с угловой скоростью вокруг мгновенной оси, проходящей через центр инерции. При этом выражение для кинетической энергии тела преобразуется к виду

)

где - момент инерции тела относительно мгновенной оси вращения, проходящей через центр инерции.

19. Кинетическая энергия при плоском движении слагается из энергии поступательного движения со скоростью центра инерции тела и энергии вращения вокруг оси, проходящей через центр инерции.

Любое движение твёрдого тела может быть представлено суперпозицией двух движений — поступательного и вращательного.

Представим плоское движение тела суммой поступательного со скоростью , равной скорости центра масс, и вращения с угловой скоростью вокруг оси, проведённой через центр масс тела — точку С.

Скорость i-той частицы тела (Dmi) будет равна векторной сумме её скоростей в этих двух движениях:

.

Здесь — радиус-вектор частицы, определяющий её положение относительно точки центра масс — С

Вычислим кинетическую энергию i-той частицы:

.

Заметим (см. рис. 10.4), что модуль векторного произведения равен:

,

где Ri — радиус круговой траектории частицы Dmi, или, что то же самое, — её расстояние от оси вращения.

Кинетическая энергия тела равна сумме энергий всех её частиц, поэтому:

.

20.закон всемирного тяготения. Этот закон был открыт Ньютоном Он гласит, что сила гравитационного притяжения между двумя материальными точками массы и , разделёнными расстоянием , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними — то есть:

Здесь — гравитационная постоянная, равная м³/(кг с²)

В ньютоновской теории каждое массивное тело порождает силовое поле притяжения к этому телу, которое называется гравитационным полем. Это поле потенциально, и функция гравитационного потенциала для материальной точки с массой определяется формулой:

Пе́рвая косми́ческая ско́рость (кругова́я ско́рость) — скорость, которую необходимо придать объекту, который после этого не будет использовать реактивное движение, чтобы вывести его на круговую орбиту (пренебрегая сопротивлением атмосферы и вращением планеты). Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите. В инерциальной системе отсчёта на объект, движущийся по круговой орбите вокруг Земли будет действовать только одна сила — сила тяготения Земли.

Втора́я косми́ческая ско́рость (параболи́ческая ско́рость, ско́рость освобожде́ния, ско́рость убега́ния) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала по сравнению с массой небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела. Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой. Для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для Солнца вторая космическая скорость составляет 617,7 км/с.

21. Свободные (или собственные) — это колебания в системе под действием внутренних сил, после того как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие). Простейшими примерами свободных колебаний являются колебания груза, прикреплённого к пружине, или груза, подвешенного на нити. mv2/2+kx2/2=const

Отсюда видно, что в процессе колебаний происходит периодическое превращение потенциальной энергии тела в кинетическую, и наоборот. В случае же электрических колебаний в контуре, содержащем конденсатор емкостью С и катушку индуктивностью L, закон сохранения энергии имеет вид:

Li2/2+q2/2C=const
В контуре происходит периодическое превращение энергии электрического поля конденсатора в энергию магнитного поля тока, и наоборот.
Частота свободных колебаний полностью определяется свойствами самой колебательной системы. Поэтому ее называют собственной частотой системы и рассчитывают:
— для математического маятника (колеблющейся в гравитационном поле Земли материальной точки, подвешенной на невесомой и нерастяжимой нити длиной l)ω =√g/l

— для пружинного маятника ω = √k/m

— для колебательного контура ω =1/√LC

22. Затухающие колебания — колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата

Пускай имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m. Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).

Тогда второй закон Ньютона для рассматриваемой системы запишется так:

где — сила сопротивления, — сила упругости

,

Для упрощения вводятся следующие обозначения:

Величину называют собственной частотой системы, — коэффциентом затухания

23. Вынужденные колебания — колебания, происходящие под воздействием внешних сил, меняющихся во времени. Установившиеся вынужденные колебания происходят с частотой, равной частоте вынуждающей силы. Рассмотрим вынужденные колебания на примере реального (с трением) пружинного маятника. Будем отталкиваться от уравнения движения (второй закон Ньютона), которое мы написали для затухающих колебаний. При наличии дополнительной вынуждающей силы F(t) необходимо дописать ее в правую часть уравнения. В каноническом виде дифференциальное уравнение вынужденных механических колебаний имеет вид:

Для пружинного маятника:

и

мы знаем, что вынужденные установившиеся колебаниясовершаются с частотой вынуждающей силы. Поэтому нашим искомым решением будет являться:

где А - амплитуда вынужденных колебаний, j۪ - сдвиг фаз между смещением и приложенной силой.

Получившиеся колебания подчиняются закону синуса (или косинуса), то есть являются синусоидальными или гармоническими. Но это не свободные колебания в системе без трения; здесь вынуждающая сила постоянно поставляет энергию в систему, в точности компенсирующую потери на преодоление сил трения.

24. Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины L неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит[1] от амплитуды и массы маятника. Колебания математического маятника описываются обыкновенным дифференциальным уравнением вида

где ― положительная константа, определяемая исключительно из параметров маятника

Пружинный маятник — механическая система, состоящая из пружины с коэффициентом упругости (жёсткостью) k (закон Гука), один конец которой жёстко закреплён, а на втором находится груз массы m.Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения.Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене.

Второй закон Ньютона для такой системы при условии отсутствия внешних сил и сил трения имеет вид:

Центр качания — точка, в которой надо сосредоточить всю массу физического маятника, чтобы его период колебаний не изменился.

Поместим на луче, проходящем от точки подвеса через центр тяжести точку на расстоянии от точки подвеса. Эта точка и будет центром качания маятника.

25.Векторная диаграмма — графическое изображение меняющихся по закону синуса (косинуса) величин и соотношений между ними при помощи направленных отрезков — векторов. Метод векторных диаграмм. Каждому гармоническому колебанию с частотой можно поставить в соответствие вращающийся с угловой скоростью вектор, длина которого равна амплитуде а его начальное (стартовое) полжение задается углом совпадающим с начальной фазой.

Сложение колебаний одного направления. С помощью векторных диаграмм легко осуществить сложение гармонических колебаний.

Рассмотрим сложение двух гармонических колебаний х 1 и x 2 одного направления и одинаковой частоты:

,

Оба колебания представим с помощью векторов A 1 и А 2 . Используя правила сложения векторов можно найти результирующий вектор А, представляющий собой сумму двух векторов A 1 и А 2 .

Вектор A представляет собой результирующее колебание, потому что из рисунка видно, что проекция этого вектора на ось x равна сумме проекций складываемых векторов:

Вектор A вращается с той же угловой скоростью ω 0 , как и векторы А 1 и А 2 , так что сумма x 1 и х 2 является гармоническим колебанием с частотой (ω 0 , амплитудой A и начальной фазой α . Используя теорему косинусов получаем, что

Замена сложения функций сложением векторов, которая возможна при Представление гармонических колебаний с помощью векторов, значительно упрощает вычисления.

26. сложение взаимно перпендикулярных колебаний.Найдем результат сложения двух гармонических колебаний одинаковой частоты ω, которые происходят во взаимно перпендикулярных направлениях вдоль осей х и у. Начало отсчета для простоты выберем так, чтобы начальная фаза первого колебания была равна нулю, и запишем это в виде

где α — разность фаз обоих колебаний, А и В равны амплитудам складываемых колебаний. Уравнение траектории результирующего колебания определим исключением из формулы времени t. Записывая складываемые колебания как

Если частоты взаимно перпендикулярных колебаний неодинаковы и относятся как целые числа, то траектории результирующего движения имеют более сложные формы. Их называют фигурами Лиссажу.

27.Распространение волн в упругих средах. Если в каком-либо месте упругой (твердой, жидкой или газообразной) среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание начнет распространяться в среде с некоторой скоростью v. Процесс распространения колебаний называется волной. Частицы среды, в которой распространяется волна, не переносятся волной, они лишь совершают колебания около своих положений равновесия. В зависимости от направления колебания частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль направления распространения волны. В поперечной волне частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Механические поперечные волны могут возникнуть лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновение только продольных волн. В твердой среде возможно возникновение как продольных, так и поперечных волн. В продольных волнах вследствие совпадения направлений колебаний частиц и волны появляются сгущения и разрежения. Скорость распространения волн тем меньше, чем инертнее среда, т.е. чем больше ее плотность. С другой стороны, она имеет большее значение в более упругой среде, чем в менее упругой. Скорость продольных волн определяется по формуле: , а поперечной: де ρ- плотность среды, E - модуль Юнга, G - модуль сдвига. Так как для большинства твердых тел E>G то скорость продольных волн больше скорости поперечных.

Следовательно, колебания частиц в плоскости x будут отставать по времени на t от колебаний частиц в плоскости , т.е.

  ,    

– это уавнение плоской волны. Таким образом, x есть смещение любой из точек с координатой x в момент времени t. При выводе мы предполагали, что амплитуда колебания . Это будет, если энергия волны не поглощается средой.

В случае, когда скорость волны υ во всех направлениях постоянна, а источник точечный, волна будет сферической.

Предположим, что фаза колебаний источника равна wt (т.е. ). Тогда точки, лежащие на волновой поверхности радиуса r, будут иметь фазу . Амплитуда колебаний здесь, даже если волна не поглощается средой, не будет постоянной, она убывает по закону .

28. Волновое уравнение в математике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн

В общем случае волновое уравнение записывается в виде

,

где — оператор Лапласа, — неизвестнаяфункция, — время, — пространственная переменная, — фазовая скорость.

В одномерном случае уравнение называется также уравнением колебания струны и записывается в виде

Скорость распро­странения звуковых волн в газах зависит от абсолютной темпера­туры и для идеальных газов определяется по формуле:

Скорость распространения продольных волн в твердых телах зависит от плотности и модулей упругости: Упругие волны - волны, обусловленные упругими силами, возникающими в различных средах при их деформациях (сжатии, сдвиге или изгибе). Звук и сейсмические волны являются примерами упругих волн.Упругие волны могут быть продольными и поперечными.В газах и жидкостях упругие силы возникают только при сжатии и не возникают при сдвиге. Поэтому смещения частиц газа или жидкости распространяются только в виде продольных волн, или волн сжатия. В твердых телах упругие силы возникают также при сдвиге. Вследствие этого в твердых телах могут одновременно распространяться и продольные волны, и поперечные, т.е. волны сдвига.

Вместе с волной от частицы к частице передается только состояние колебательного движения и его энергия.Упругая волнаназывается гармонической,если соответствующие ей колебания частиц среды являются гармоническими.

Виды и характеристики упругих волнМеханическая волна - колебания, распространяющиеся в упругой среде — газе, жидкости или твердом теле. Например, волны на по­верхности воды; в резиновом шнуре, один конец которого закреплен, а дру­гой его конец приведен в колебатель­ное движение.Механические волны воз­никают благодаря силам упругости. Распространение механичес­ких волн связано с переносом вещества среды из одного места в другое на большие расстояния.По форме волновых поверхностей различают волны плос­кие и сферические.

29. Стоя́чая волна́ — колебания в распределённых колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов) амплитуды. Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения.

Примерами стоячей волны могут служить колебания струны, колебания воздуха в органной трубе[1]; в природе — волны Шумана.

Чисто стоячая волна, строго говоря, может существовать только при отсутствии потерь в среде[2] и полном отражении волн от границы. Обычно, кроме стоячих волн, в среде присутствуют и бегущие волны, подводящие энергию к местам её поглощения или излучения.

В случае гармонических колебаний в одномерной среде стоячая волна описывается формулой:

,

где u — возмущения в точке х в момент времени t, — амплитуда стоячей волны, — частота , k — волновой вектор, — фаза.

Стоячие волны являются решениями волновых уравнений. Их можно представить себе как суперпозицию волн, распространяющихся в противоположных направлениях.

При существовании в среде стоячей волны, существуют точки, амплитуда колебаний в которых равна нулю. Эти точки называются узлами стоячей волны. Точки, в которых колебания имеют максимальную амплитуду, называются пучностями.

Эффе́кт До́плера — изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника. Эффект Доплера легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится (а длина уменьшится), и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, он услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты (и, соответственно, большей длины) звуковых волн.

Для волн (например, звука), распространяющихся в какой-либо среде, нужно принимать во внимание движение как источника, так и приёмника волн относительно этой среды. Для электромагнитных волн (например, света), для распространения которых не нужна никакая среда, в вакууме имеет значение только относительное движение источника и приёмника

30.Линии и трубки тока. Линии, касательные к которым в каждой точке совпадают с вектором скорости v, называются линиями тока. Густоа линий пропорциональна величине скорости в данном месте.

В общем случае величина и направление вектора v может меняться с течением времени. Если же вектор скорости в каждой точке жидкости остается постоянным, то течение называется установившимся, или стационарным. Картина линий тока при стационарном течении остается неизменной, и линии тока в этом случае совпадают с траекториями частиц жидкости. Часть жидкости, ограниченная линиями тока называется трубкой тока. Ясно, что жидкость не может вытекать или втекать через боковую поверхность трубки тока. Так как жидкость несжимаема, то количество жидкости, протекающее через любое поперечное сечение одной и той же трубки тока одинаково. Следовательно, можно записать: S•v=const (1.66)где S - поперечное сечение трубки тока, v - скорость жидкости для этой трубки тока. Данное уравнение называют уравнением неразрывности струи.

В электродинамике уравнение непрерывности выводится из уравнений Максвелла. Оно утверждает, что дивергенция плотности тока равна изменению плотности заряда со знаком минус,

Оно выражает собой закон сохранения массы в элементарном объеме, то есть непрерывность потока жидкости или газа.

Бернулли уравнение, основное уравнение гидродинамики, связывающее (для установившегося течения) скорость текущей жидкости v, давление в ней р и высоту h расположения малого объёма жидкости над плоскостью отсчёта. Б. у. было выведено Д. Бернулли в 1738 для струйки идеальной несжимаемой жидкости постоянной плотности r, находящейся под действием только сил тяжести. В этом случае Б. у. имеет вид:

v2/2 + plr + gh = const,где g — ускорение силы тяжести.

Наши рекомендации