Формы движений позвоночного столба
1. Движение вокруг фронтальной оси (сгибание и разгибание) – общий размах 170 – 245 градусов;
2. Движения вокруг сагиттальной оси (отклонения в стороны) – около 55 гр.;
3. Вращения вокруг вертикальной оси – до 90 гр. (в значительной мере определяется тренировкой).
Наиболее подвижными являются шейный, нижнегрудной и верхнепоясничный отделы позвоночного столба.
Формы движений верхних конечностей
1. Перекладывания и перенос предметов;
2. Поднятие или удержание предмета на весу;
3. Отталкивание (движение от себя) (толкание ядра);
4. Поднимание / опускание верхней конечности с последующими манипуляциями кистью;
5. Ударные движения;
6. Пронаторно-супинаторные движения;
7. Вращение;
8. Давление на предмет в вертикальном направлении.
Механические движения в живых системах.
Механическое движение в живых системах проявляется как а) передвижение всей биосистемы относительно ее окружения (среды, опоры, физических тел) и б) деформация самой биосистемы — передвижение одних ее частей относительно других. Основные законы механики Ньютона описывают движение абстрактных абсолютно твердых тел, которые не деформируются. Таких (тел в природе не существует. Но в так называемых твердых телах Деформации бывают столь малы, что их нередко можно и не учитывать. В живых же системах существенно изменяется относительное расположение их частей. Эти изменения и есть движения человека. Сами части живых систем (например, позвоночный столб, грудная клетка) также подчас существенно деформируются. Поэтому, изучая движение живой системы, имеют в виду, что работа сил тратится и на передвижение тела в целом, и на деформации. При этом всегда имеются потери энергии, ее рассеяние. Чисто механического движения вообще в природе не существует. Оно всегда сопровождается превращениями механической энергии в другие виды (например, в тепловую) и ее потерями.
Механическое движение человека, изучаемое в биомеханике спорта, Происходит под воздействием внешних механических сил (тяжести, трения и многих других) и сил тяги мышц. Последние же управляются центральной нервной системой и, следовательно, обусловлены физиологическими процессами. Поэтому для достаточно полного понимания природы живого движения необходимо не только изучение собственно механики движений, но и рассмотрение их биологической стороны. Именно она определяет причины организации механических сил.
Надо знать, что не существует особых законов механики для живого мира. Но насколько живые системы отличаются от абстрактных абсолютно твердых тел, настолько же механическое движение живого сложнее движения абсолютно твердого тела. Следовательно, применяя общие законы механики к живым объектам, необходимо учитывать не только их механические особенности, но и биологические (например, причины приспособления движений человека к условиям, пути совершенствования движений, влияние утомления).
Содержание, теория и метод биомеханики.
Содержание науки составляет совокупность накопленных знаний, складывающихся в определенную систему - теорию науки, а также пути получения этих знаний - метод науки. И теория и метод выражаются в понятиях и законах науки, характерных для нее, раскрывающих ее содержание.
В основе современного понимания двигательных действий заложен системно-структурный подход, который позволяет рассматривать тело человека как движущуюся систему, а сами процессы движения - как развивающиеся системы движений.
Теория биомеханики в настоящее время охватывает три большие проблемы.
Особенности строения и свойства животных организмов оказывают существенное влияние на закономерности их движений. Исходя из этого, тело человека рассматривается как биомеханическая система. С давних пор органы опоры и движения сравнивают с рычагами. Ранее указывали лишь на то, что, изучая движения таких рычагов, надо учитывать анатомо-физиологические особенности тела человека. Следующим этапом в понимании природы движений было признание специфики биомеханических систем, отличных в принципе от твердых тел или систем твердых тел. Эта специфика заставляет изучать такие свойства биомеханических систем, которых нет в искусственных конструкциях, машинах, создаваемых человеком. Поэтому в теории биомеханики возникла проблема изучения строения и свойства биомеханических систем, а также их развития.
Для решения общей задачи биомеханики необходимо изучение специфических особенностей самих процессов
достижения живого организма и условий, обеспечивающих эффективность приложения сил. Для движений животных характерно сочетание множества движений в суставах в единое целое -систему движений. С этим связано возникновение в теории биомеханики проблемы изучения эффективности двигательных действий, как систем движений, их особенностей и развития.
Чрезвычайно важно изучение изменения движений в процессе овладения двигательными действиями как системами движений (двигательными актами, приемами выполнения действий) . С этим связана проблема изучения закономерностей формирования и совершенствования движений.
Метод биомеханики - системный анализ и синтез движений на основе количественных характеристик, в частности кибернетическое моделирование движений.
Биомеханика, как наука экспериментальная, эмпирическая, опирается на опытное изучение движений. При помощи приборов регистрируются количественные характеристики, например траектории скорости, ускорения и др., позволяющие различать движения, сравнивать их между собой. Рассматривая характеристики, мысленно расчленяют систему движений на составные части - устанавливают ее состав. В этом проявляется системный анализ.
Система движений как целое - не просто сумма ее составляющих частей. Части системы объединены многочисленными взаимосвязями, придающими ей новые, не содержащиеся в ее частях качества (системные свойства). Необходимо мысленно представлять это объединение, устанавливать способ взаимосвязи частей в системе - ее структуру. В этом проявляется системный синтез.
Системный анализ и системный синтез неразрывно связаны друг с другом, они взаимно дополняются в системно-структурном исследовании.
При изучении движений в процессе развития системного анализа и синтеза в последние годы все шире применяется метод кибернетического моделирования - построение управляемых моделей (электронных, математических, физических и др.) движений и моделей тела человека.
Метод (греч. methodos – путь к чему-либо)– в самом общем значении – способ достижения цели, определенным образом упорядоченная деятельность.
Метод исследования выбирают исходя из условий проведения и задач исследования. К методу исследования и обеспечивающей его аппаратуре предъявляют следующие требования:
• Метод и аппаратура должны обеспечивать получение достоверного результата, то есть степень точности измерений должна соответствовать цели исследования;
• Метод и аппаратура не должны влиять на исследуемый процесс, то есть искажать результаты и мешать испытуемому;
• Метод и аппаратура должны обеспечивать оперативность получения результата.
Пример. Тренер и спортсмен поставили цель улучшить результат в беге на 100 м на 0,1 с. Спринтер пробегает дистанцию 100 м за 50 шагов, следовательно, время каждого шага должно в среднем быть уменьшено на 0,002 с. Очевидно, для получения достоверного результата, погрешность измерения длительности шага не должна превышать 0.0001 с