Момент импульса системы тел сохраняется неизменным при любых взаимодействиях внутри системы, если результирующий момент внешних сил, действующих на нее, равен нулю.
Закон изменения импульса
. По 3 закону Ньютона сумма всех внутренних сил равна нулю, т.к. для каждой силы найдется своя противодействующая равная ей по величине и противоположная по направлению. Величину P, равную векторной сумме импульсов частей pi, назовем полным импульсом рассматриваемой системы тел.
Тогда отношение изменения импульса системы к изменению времени равняется сумме всех внешних сил. Это и есть одна из формулировок закона изменения импульса. Классическая формулировка гласит: скорость изменения полного импульса системы равна векторной сумме внешних сил, действующих на систему. Если сумма всех внешних сил равна нулю (замкнутая система) или внешние силы вообще на нее не действуют (изолированная система), то изменение импульса равно нулю и импульс остается неизменным P = const.Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом:
— радиус-вектор центра масс,
— радиус-вектор i-й точки системы,
— масса i-й точки
11. Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения.Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением
Рассмотрим систему, состоящую из одной частицы, и запишем второй закон Ньютона:
— есть результирующая всех сил, действующих на тело. Скалярно умножим уравнение на перемещение частицы . Учитывая, что , Получим:
Работа силы определяется, как “мера действия силы, зависящая от численной величины и направления силы и от перемещения точки её приложения“.U dq = dW и dW = U dq
где dW − энергетическое воздействие на систему, dq − приращение координаты состояния системы, U − динамическое воздействие на систему
12. консервати́вные си́лы (потенциальные силы) — силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил). Отсюда следует определение: консервативные силы — такие силы, работа которых по любой замкнутой траектории равна 0.
Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется.
Для консервативных сил выполняются следующие тождества:
— работа консервативных сил по произвольному замкнутому контуру равна 0;Таким образом, потенциальная сила всегда направлена против направления возрастания потенциальной энергии.Потенциальная энергия — скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет своего нахождения в поле действия сил.
Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.
13.Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение
Момент импульса частицы относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:
где — радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, — импульс частицы.
Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) — векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.
где — сила, действующая на частицу, а — радиус-вектор частицы
Парой сил называется совокупность двух равных по модулю, параллельных и противонаправленных сил. Расстояние между линиями действия сил пары называется ее плечом. Моментом пары называется взятое со знаком "плюс" или "минус" произведение модуля сил, образующих пару, на ее плечо. Момент пары сил положителен, если пара стремится вращать тело против часовой стрелки, и отрицателен в противоположном случае. Момент пары определяется по формуле
,где .
14.Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.
Закон сохранения момента импульса есть проявление изотропности пространства.
Из закона изменения момента импульса, полученного нами для системы тел, вытекает закон сохранения момента импульса применительно к механике:
момент импульса системы тел сохраняется неизменным при любых взаимодействиях внутри системы, если результирующий момент внешних сил, действующих на нее, равен нулю.
Еще раз подчеркнем, что при использовании этого закона моменты импульса и сил необходимо брать относительно одно и той же оси.
Закон сохранения момента импульса является фундаментальным законом природы и выполняется для любых, а не только механических систем.
Следствия из закон сохранения момента импульса:
· в случае изменения скорости вращения одной части системы другая также изменит скорость вращения, но в противоположную сторону таким образом, что момент импульса системы не изменится;
· если момент инерции замкнутой системы в процессе вращения изменяется, то изменяется и ее угловая скорость таким образом, что момент импульса системы останется тем же самым;
· в случае, когда сумма моментов внешних сил относительно некоторой оси равняется нулю, момент импульса системы относительно этой же оси остается постоянным.
15. МГНОВЕННАЯ ОСЬ ВРАЩЕНИЯ-прямая, неподвижная в данный момент в нек-рой инерциальной системе отсчёта, относительно к-рой сложное движение твёрдого тела в этот момент можно представить как вращат. вокруг этой прямой. М. о. в. может лежать как внутри тела, так и вне его. С течением времени положение М. о. в. изменяется относительно как неподвижной системы отсчёта, так и системы отсчёта, движущейся вместе с телом. Для кинематического описания вращения твердого тела удобно использовать угловые величины: угловое перемещение Δφ, угловую скорость ω
и угловое ускорение ε
В механике доказывается теорема о движении центра масс: под действием внешних сил центр масс любого тела или системы взаимодействующих тел движется как материальная точка, в которой сосредоточена вся масса системы. Выводы:
Механическую систему или твердое тело можно рассматривать как материальную точку в зависимости от характера ее движения, а не от ее размеров.
Внутренние силы не учитываются теоремой о движении центра масс.
Теорема о движении центра масс не характеризует вращательное движение механической системы, а только поступательное
16. Момент инерции — скалярная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).
Единица измерения СИ: кг·м².Обозначение: I или J.
Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:
,mi — масса i-й точки,
ri — расстояние от i-й точки до оси.
(5.10) |
Это выражение носит название основного уравнения динамики вращательного движения и формулируется следующим образом: изменение момента количества движения твердого тела , равно импульсу момента всех внешних сил, действующих на это тело.
Момент инерции тела зависит в общем случае от его массы, расположения массы в теле, размеров и формы тела и положения оси вращения.
Момент инерции относительно оси вращения:
а) материальной точки
б)дискретного твердого тела (
в) сплошного твердого тела
В случае непрерывного распределения массы тела (сплошное однородное твердое тело), тело делится на бесконечно малые участки массы и, считая их за материальные точки, находятся моменты инерции этих участков относительно оси вращения, а затем производится интегрирование
17. Момент инерции — скалярная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).
Единица измерения СИ: кг·м².
Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы, формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:
Если — момент инерции тела относительно оси, проходящей через центр масс тела, то момент инерции относительно параллельной оси, расположенной на расстоянии от неё, равен
,
где — полная масса тела.
Например, момент инерции стержня относительно оси, проходящей через его конец, равен:
Теорема Штейнера. Момент инерции тела любой оси вращения равен моменту его инерции относительно параллельной оси, проходящей через центр масс тела, сложенному с произведением массы тела на квадрат расстояния между ними .