Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор

Процесс зарядки конденсатора можно представить как последовательный перенос достаточно малых порций заряда Δq > 0 с одной обкладки на другую (рис. 1.7.1). При этом одна обкладка постепенно заряжается положительным зарядом, а другая – отрицательным. Поскольку каждая порция переносится в условиях, когда на обкладках уже имеется некоторый заряд q, а между ними существует некоторая разность потенциалов Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор - student2.ru при переносе каждой порции Δq внешние силы должны совершить работу Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор - student2.ru

Энергия Wе конденсатора емкости C, заряженного зарядом Q, может быть найдена путем интегрирования этого выражения в пределах от 0 до Q:

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор - student2.ru
Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор - student2.ru
Рисунок 1.7.1. Процесс зарядки конденсатора

Формулу, выражающую энергию заряженного конденсатора, можно переписать в другой эквивалентной форме, если воспользоваться соотношением Q = CU.

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор - student2.ru

Электрическую энергию Wе следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе. Формулы для Wе аналогичны формулам для потенциальной энергии Eр деформированной пружины (см. ч. I, § 2.4)

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор - student2.ru

где k – жесткость пружины, x – деформация, F = kx – внешняя сила.

По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля. Это легко проиллюстрировать на примере заряженного плоского конденсатора.

Напряженность однородного поля в плоском конденсаторе равна E = U/d, а его емкость Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор - student2.ru Поэтому

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор - student2.ru

где V = Sd – объем пространства между обкладками, занятый электрическим полем. Из этого соотношения следует, что физическая величина

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор - student2.ru

является электрической (потенциальной) энергией единицы объема пространства, в котором создано электрическое поле. Ее называют объемной плотностью электрической энергии.

Энергия поля, созданного любым распределением электрических зарядов в пространстве, может быть найдена путем интегрирования объемной плотности wе по всему объему, в котором создано электрическое поле.

§16 Плотность энергии электрического поля

Теперь предположим, что имеется непрерывное распределение зарядов, задаваемое объемной плотностью ρ(r→). Тогда в элементарном объеме dV содержится заряд

dq = ρ(r→)dV,

а формула (39′) приобретает такой вид

W = 1 2 ∫ ρ(r→)ϕ(r→)dV. (16.1)

Некоторое замечание надо сделать для обоснования перехода ( 39′)→(42). При переходе к объемному распределению под интегралом, вообще говоря, следовало писать

ρ(r→)ϕ′(r→),

понимая под ϕ′(r→) потенциал всех зарядов, за исключением элементарного заряда ρdV . Мысленно представим заряд ρdV в виде равномерно заряженного шарика малого радиуса δ с центром в точке r→ и с плотностью заряда ρ(r→). Легко вычислить, что потенциал этого заряда в центре шарика = 3 2 q δ = 3 2 1 δ ⋅4 3πδ3ρ = 2πδ2 ⋅ ρ(r→), и следовательно,

ϕ′(r→) = ϕ(r→) − 2πρ(r→)δ2.

Отсюда видно, что при δ → 0 ϕ′→ ϕ(r→) и замена ϕ′(r→) на ϕ(r→), таким образом, действительно допустима.

Теперь осуществим некоторое тождественное преобразование выражения (42), заменив в последнем ρ, согласно уравнению Пуассона (13), на −1 4πΔϕ и используя формулу векторного анализа

div(ϕgradϕ) = ϕΔϕ + gradϕ)2;

в результате получим

W = − 1 8π ∫ div(ϕgradϕ)−gradϕ)2]dV = 1 8π ∮ SϕEndS+ 1 8π ∫ V E2dV,

где S — поверхность, ограничивающая объем V . Если заряды занимают ограниченный объем в пространстве, а в качестве поверхности S принять поверхность сколь угодно большого радиуса R, то при R →∞ интеграл по поверхности

∮ SR → 0,

так как на больших расстояниях ϕ и En совпадают по крайней мере не медленнее, чем 1 R и 1 R2 (если, повторим, заряды занимают конечный объем пространства), а поверхность растет как R2.

Итак, в результате тождественного преобразования выражения (42) получим формулу

W = ∫ E2 8πdV (16.2)

в виде интеграла по всему пространству, занятому полем, которая по сравнению с исходной формулой (39) имеет не только новый вид, но, по существу, и новый смысл, определяя плотность энергии электрического поля в пространстве

W = E2 8π. (16.3)

В то время как (39) описывает только энергию взаимодействия разных зарядов (i≠j), формула (42) и следующая из нее формула (43) включают также и собственную энергию каждого из этих зарядов. В терминах поля можно сказать, что формулы (42), (43) описывают полную энергию электрического поля, тогда как (39) - только часть этой энергии.

Представление об энергии электрического поля, распределенном в пространстве с объемной плотностью (44) здесь получено на основе строгих рассуждений. А теперь получим выражение (44) из рассмотрения конкретного примера. Понятно, что никакие примеры доказательства справедливости (44) для общего случая дать не могут. Зато конкретные примеры могут дать наглядное представление о том, как соотношение (44) «работает».

Начнем с обсуждения вспомогательного вопроса о силах, действующих на поверхностные заряды со стороны электрического поля. Более конкретно – силы, действующие на заряды поверхности проводника.

Мы знаем, что на точечный заряд q со стороны электрического поля E→ действует сила

F→ = qE→,

где E→ – напряженность поля, возбуждаемого всеми зарядами системы, кроме самого заряда q. Когда же мы обращаемся к силам, действующим на поверхностные заряды, возникает трудность, связанная с тем, что поле E→ по разные стороны поверхности имеет разные значения, а на самой поверхности неопределено. Как мы уже обсуждали, внутри проводника поле тождественно равно нулю, а с внешней стороны поверхности имеет только нормальную компоненту, связанную с локальной поверхностной плотностью σ (см. рис. 34). Понятно, что представление о разрыве поля обусловлено неявным отказом от рассмотрения структуры тонкого слоя, где расположены заряды, и предположим, что этот слой представляет собой бесструктурную математическую поверхность. Такая идеализация весьма продуктивна, позволяя нам определить поля вне и внутри проводника, пользуясь простыми средствами. Определение структуры поверхностного слоя для металлических проводников проводится с учетом функции распределения Ферми-Дирака для электронов проводимости и пока для нас недоступно. Но тот факт, что поверхность проводника, где сосредоточены заряды, на самом деле обладает некоторой конечной толщиной δ, хотя и весьма малой, где заряды распределены по объему, позволяет легко получить выражение, связывающее силы, действующие на поверхность проводника, с напряженностью поля вблизи этой поверхности.

Итак, рассмотрим выделенный на рис. 34 участок поверхности dS проводника. Имея ввиду, что толщина слоя очень мала, кривизной поверхности можно пренебречь и считать поверхность проводника и рассматриваемый слой плоскими.

По внешней нормали к поверхности проводника проведем ось x и пусть слой, где распределены заряды, занимает область [0,δ](рис. 35). Можно считать, что поле E→ внутри и вблизи слоя не зависит от координат y,z и имеет только x-компоненту Ex(x), а объемная плотность заряда характеризуется функцией ρ(x). Левее этого слоя электрическое поле равно нулю (поле внутри проводника). Следовательно, Ex(x) внутри слоя удовлетворяет уравнению

dEx dx = 4πρ(x),(∗)

граничному условию E(0) = 0 и имеет решение

Ex(x) = 4π ∫ 0xρ(ξ)dξ.

Теперь нетрудно найти силу, действующую на слой,

f→ = fxe→x,fx = ∫ 0δρ(x)E x(x)dx,

приходящуюся на единицу поверхности проводника. Подставив сюда вместо ρ(x) выражение из (*), получаем

fx = 1 4π ∫ 0δE x(x)dEx dx dx = 1 8π ∫ 0δ d dx[Ex(x)]2dx,

т.е.

fx = 1 8πE02,

где E0 = Ex(δ) = 4π ∫ 0δρ(x)dx = 4πσ – напряженность поля на внешней поверхности проводника.

Таким образом,сила, действующая на поверхность проводника, определяется суммарным зарядом σ = ∫ 0δρ(x)dx, приходящимся на единицу площади поверхности, и не зависит от распределения ρ(x). Обратим внимание, что при любом знаке заряда σ, т.е. при любом направлении поля E→0, сила f→ направлена вдоль внешней нормали, т.е.

f→ = E02 8π n→. (16.4)

Заметим, что результат (45) справедлив для любой заряженной поверхности, если только по одну сторону от поверхности напряженность поля равна нулю.

Теперь обратимся к примеру, призванному служить иллюстрацией к выражению

W = 1 8π ∫ E2dV.

Пример 1. Пусть сферическая поверхность радиуса R равномерно заряжена с суммарным зарядом q. Рассмотрев процесс расширения сферы до радиуса R + dR найти выражение для плотности энергии электрического поля.

Имеем

в начальном состоянииEr = q r2 приr > R 0приr < R

в конечном состоянииEr = q r2 приr > R + dR 0приr < R + dR

Поля изображены на рисунке 36.

Со стороны электрического поля на сферу действуют силы с плотностью

fr = 1 8πE02,E 0 = q R2.

Эти силы совершают работу

δA = fr ⋅ 4πR2dR = 1 8πE02 ⋅ 4πR2dR.(а)

В процессе расширения сферы электрическое поле в пространстве r > R + dR осталось без изменения, а в сферическом слое ( R,R+ dR) исчезло полностью, т.е. энергия электрического поля изменилась на величину

dW = −W ⋅ 4πR2dR,(б)

где W – искомая объемная плотность энергии.

Согласно закону сохранения энергии

δA = −dW,

т.е. работа δA электрических сил совершена за счет убыли энергии электрического поля. Подставляя сюда выражения (а) и (б), после сокращения на объем слоя 4πR2dR получаем W = 1 8πE02 – то, что мы хотели увидеть.

Замечание. Этой сферой можно воспользоваться для решения обратной задачи: считая, что плотность энергии W нам известна, найти поверхностную силу fr, отнесенную к единице поверхности заряженной сферы со стороны электрического поля. Решение очевидно.

В качестве второго примера вычислим энергию поля равномерно заряженного шара радиуса a

Er = q r2 при r ≥ R q a3 r при r < a

W = 1 8π ∫ 0aq2 a6r2 ⋅ 4πr2dr + 1 8π ∫ a∞q2 r44πr2dr = 3 5 q2 a .

Воспользуемся полученным результатом для введения понятия «классический радиус частицы».

По теории относительности поле с энергией W обладает массой m = W∕c2. Следовательно, любая частица с массой m и зарядомq не может иметь размер, меньший

rq = q2 mc2,

т.к. масса частицы не может быть меньше массы ее поля (при выписывании этой формулы константа 3/5 не принимается во внимание).

Например, для электрона

re = e2 mc2 ≃ 2,8 ⋅ 10−13см.

В следующем семестре мы скажем, что на таких расстояниях классическая электродинамика неприменима, а пока на этом остановимся.

Наши рекомендации