Сравнительная характеристика выключателей
5.1 Требования, предъявляемые к выключателям, заключаются в следующем:
1) надежность в работе и безопасность для окружающих;
2) быстродействие – возможно малое время отключения;
3) удобство в обслуживании;
4) простота монтажа;
5) бесшумность работы;
6) сравнительно невысокая стоимость.
Применяемые в настоящее время выключатели отвечают перечисленным требованиям в большей или меньшей степени. Однако конструкторы выключателей стремятся к более полному соответствию характеристик выключателей выдвинутым выше требованиям.
Масляные выключатели
Различают масляные выключатели двух видов – баковые и маломасляные. Методы деионизации дугового промежутка в этих выключателях одинаковы. Различие заключается лишь в изоляции контактной системы от заземленного основания и в количестве масла.
До недавнего времени в эксплуатации находились баковые выключатели следующих типов: ВМ-35, С-35, а также выключатели серии У напряжением от 35 до 220 кВ. Баковые выключатели предназначены для наружной установки, в настоящее время не производятся.
Основные недостатки баковых выключателей: взрыво- и пожароопасность; необходимость периодического контроля за состоянием и уровнем масла в баке и вводах; большой объем, масла, что обусловливает большую затрату времени на его замену, необходимость больших запасов масла; непригодность для установки внутри помещений.
Маломасляные выключатели
Маломасляные выключатели (горшковые) получили широкое распространение в закрытых и открытых распределительных устройствах всех напряжений. Масло в этих выключателях в основном служит дугогасящей средой и только частично изоляцией между разомкнутыми контактами.
Изоляция токоведущих частей друг от друга и от заземленных конструкций осуществляется фарфором или другими твердыми изолирующими материалами. Контакты выключателей для внутренней установки находятся в стальном бачке (горшке), отсюда сохранилось название выключателей "горшковые".
Маломасляные выключатели напряжением 35 кВ и выше имеют фарфоровый корпус. Самое широкое применение получили выключатели 6-10 кВ подвесного типа (ВМГ-10, ВМП-10). В этих выключателях корпус крепится на фарфоровых изоляторах к общей раме для всех трех полюсов. В каждом полюсе предусмотрен один разрыв контактов и дугогасительная камера.
Рисунок 6.1 - Конструктивные схемы маломасляных выключателей 1 – подвижный контакт; 2 – дугогасительная камера; 3 – неподвиж-ный контакт; 4 – рабочие контакты
При больших номинальных токах обойтись одной парой контактов (которые выполняют роль рабочих и дугогасительных) трудно, поэтому предусматривают рабочие контакты снаружи выключателя, а дугогасительные – внутри металлического бачка. При больших отключаемых токах на каждый полюс имеется два дугогасительных разрыва. По такой схеме выполняются выключатели серий МГГ и МГ на напряжение до 20 кВ включительно. Массивные внешние рабочие контакты 4 позволяют рассчитать выключатель на большие номинальные токи (до 9500 А). При напряжениях 35 кВ и выше корпус выключателя выполняется фарфоровым, серия ВМК – выключатель маломасляный колонковый). В выключателях 35, 110 кВ предусмотрен один разрыв на полюс, при больших напряжениях – два разрыва и более.
Недостатки маломасляных выключателей: взрыво- и пожароопасность, хотя и значительно меньшая, чем у баковых выключателей; невозможность осуществления быстродействующего АПВ; необходимость периодического контроля, доливки, относительно частой замены масла в дугогасительных бачках; трудность установки встроенных трансформаторов тока; относительно малая отключающая способность.
Область применения маломасляных выключателей – закрытые распределительные устройства электростанций и подстанций 6, 10, 20, 35 и 110 кВ, комплектные распределительные устройства 6, 10 и 35 кВ и открытые распределительные устройства 35 и 110 кВ.
Воздушные выключатели
В воздушных выключателях гашение дуги происходит сжатым воздухом при давлении 2-4 МПа, а изоляция токоведущих частей и дугогасительного устройства осуществляется фарфором или другими твердыми изолирующими материалами. Конструктивные схемы воздушных выключателей различны и зависят от их номинального напряжения, способа создания изоляционного промежутка между контактами в отключенном положении, способа подачи сжатого воздуха в дугогасительное устройство.
В выключателях на большие номинальные токи имеется главный и дугогасительный контур подобно маломасляным выключателям МГ и МГГ. Основная часть тока во включенном положении выключателя проходит по главным контактам 4, расположенным открыто. При отключении выключателя главные контакты размыкаются первыми, после чего весь ток проходит по дугогасительным контактам, заключенным в камере 2. К моменту размыкания этих контактов в камеру подается сжатый воздух из резервуара 1, создается мощное дутье, гасящее дугу. Дутье может быть продольным или поперечным.
Необходимый изоляционный промежуток между контактами в отключенном положении создается в дугогасительной камере путем разведения контактов на достаточное расстояние. Выключатели, выполненные по конструктивной схеме с открытым отделителем, изготовляются для внутренней установки на напряжение 15 и 20 кВ и ток до 20000 А (серия ВВГ). В данном типе выключателей после отключения отделителя 5 прекращается подача сжатого воздуха в камеры и дугогасительные контакты замыкаются.
Рисунок 6.2 - Конструктивные схемы воздушных выключателей 1 – резервуар со сжатым воздухом; 2 – дугогасительная камера; 3 – шунтирующий резистор; 4 – главные контакты; 5 – отделитель; 6 – емкостный делитель напряжения на 110 кВ – два разрыва на фазу (г)
В воздушных выключателях для открытой установки на напряжение 35 кВ (ВВ-35) достаточно иметь один разрыв на фазу.
В выключателях напряжением 110 кВ и выше после гашения дуги размыкаются контакты отделителя 5 и камера отделителя остается заполненной сжатым воздухом на все время отключенного положения. При этом в дугогасительную камеру сжатый воздух не подается и контакты в ней замыкаются.
По данной конструктивной схеме созданы выключатели серии ВВ на напряжение до 500 кВ. Чем выше номинальное напряжение и чем больше отключаемая мощность, тем больше должно быть разрывов в дугогасительной камере и в отделителе.
По конструктивной схеме рис, г выполняются воздухонаполненные выключатели серии ВВБ. Напряжение модуля ВВБ 110 кВ при давлении сжатого воздуха в гасительной камере 2 МПа. Номинальное напряжение модуля выключателя серии ВВБК (крупномодульного) составляет 220 кВ, а давление воздуха в гасительной камере 4 МПа. Аналогичную конструктивную схему имеют выключатели серии ВНВ: модуль напряжением 220 кВ при давлении 4 МПа.
Для выключателей серии ВВБ количество дугогасительных камер (модулей) зависит от напряжения (110 кВ – одна; 220 кВ – две; 330 кВ – четыре; 500 кВ – шесть; 750 кВ – восемь), а для крупномодульных выключателей (ВВБК, ВНВ) количество модулей соответст-венно в два раза меньше.
Элегазовые выключатели
Элегаз (SF6 – шестифтористая сера) представляет собой инертный газ, плотность которого превышает плотность воздуха в 5 раз. Электрическая прочность элегаза в 2 – 3 раза выше прочности воздуха; при давлении 0,2 МПа электрическая прочность элегаза сравнима с прочностью масла.
В элегазе при атмосферном давлении может быть погашена дуга с током, который в 100 раз превышает ток, отключаемый в воздухе при тех же условиях. Исключительная способность элегаза гасить дугу объясняется тем, что его молекулы улавливают электроны дугового столба и образуют относительно неподвижные отрицательные ионы. Потеря электронов делает дугу неустойчивой, и она легко гаснет. В струе элегаза, т. е. при газовом дутье, поглощение электронов из дугового столба происходит еще интенсивнее.
В элегазовых выключателях применяют автопневматические (автокомпрессионные) дугогасительные устройства, в которых газ в процессе отключения сжимается поршневым устройством и направляется в зону дуги. Элегазовый выключатель представляет со-бой замкнутую систему без выброса газа наружу.
В настоящее время элегазовые выключатели применяются на всех классах напряжений (6-750 кВ) при давлении 0,15 – 0,6 МПа. Повышенное давление применяется для выключателей более высоких классов напряжения. Хорошо зарекомендовали элегазовые выключа-тели следующих зарубежных фирм: ALSTOM; SIEMENS; Merlin Gerin и др. Освоен выпуск современных элегазовых выключателей ПО "Уралэлектротяжмаш": баковые выключатели серии ВЭБ, ВГБ и колонковые выключатели серии ВГТ, ВГУ.
В качестве примера рассмотрим конструкцию выключателя серии LF фирмы Merlin Gerin напряжением 6-10 кВ.
Базовая модель выключателя состоит из следующих элементов:
– корпуса выключателя, в котором расположены все три полюса, представляющего собой "сосуд под давлением", заполненный элегазом под низким избыточным давлением (0,15 МПа или 1,5 атм.);
– механического привода типа RI;
– передней панели привода с рукояткой для ручного взвода пружин и индикаторами состояния пружины и выключателя;
– высоковольтных силовых контактных площадок;
– многоштырьевого разъема для подключения цепей вторичной коммутации.
Вакуумные выключатели
Электрическая прочность вакуума значительно выше прочности других сред, применяемых в выключателях. Объясняется это увеличением длины среднего свободного пробега электронов, атомов, ионов и молекул по мере уменьшения давления. В вакууме длина свободного пробега частиц превышает размеры вакуумной камеры.
Рисунок 3 - Восстанавливающаяся электрическая прочность промежутка длиной 1/4" после отключения тока 1600 А в вакууме и различных газах при атмосферном давлении
В этих условиях удары частиц о стенки камеры происходят значительно чаще, чем соударения между частицами. На рисунке показаны зависимости пробивного напряжения вакуума и воздуха от расстояния между электродами диаметром 3/8" из вольфрама. При столь высокой электрической прочности расстояние между контактами может быть очень малым (2 – 2,5 см), поэтому размеры камеры могут быть также относительно небольшими.
Процесс восстановления электрической прочности промежутка между контактами при отключении тока протекает в вакууме значительно быстрее, чем в газах. Уровень вакуума (остаточное давление газов) в современных промышленных дугогасительных камерах обычно составляет Па. В соответствии с теорией электропрочности газов, не-обходимые изоляционные качества вакуумного промежутка достигаются и при меньших уровнях вакуума (порядка Па), однако для современного уровня вакуумных технологий, создание и поддержание в течение времени жизни вакуумной камеры уровня Па не составляет проблемы. Это обеспечивает вакуумным камерам запасы электропрочности на весь срок эксплуатации (20-30 лет).
Типовая конструкция вакуумной дугогасительной камеры приведена на рисунке 4.
Рисунок 4 - Конструктивная схема вакуумной дугогасительной камеры
Конструкция вакуумной камеры состоит из пары контактов (4; 5), один из которых является подвижным (5), заключенных в ваккумноплотную оболочку, спаянную из керамических или стеклянных изоляторов (3; 7), верхней и нижней металлических крышек (2; 8) и металлического экрана (6). Перемещение подвижного контакта относительно неподвижного обеспечивается путем применения сильфона (9). Выводы камеры (1; 10) служат для подключения ее к главной токоведущей цепи выключателя.
Надо отметить, что для изготовления оболочки вакуумной камеры применяются только специальные вакуумноплотные, очищенные от растворенных газов металлы – медь и специальные сплавы, а также специальная керамика. Контакты вакуумной камеры изготавливаются из металлокерамической композиции (как правило, это медь-хром в соотношении 50 %-50 % или 70 %-30 %), обеспечивающей высокую отключающую способность, износостойкость и препятствующей возникновению точек сваривания на поверхности контактов. Цилиндрические керамические изоляторы, совместно с вакуумным промежутком при разведенных контактах обеспечивают изоляцию между выводами камеры при отключенном положении выключателя.
Таврида-электрик выпустила новую конструкцию вакуумного выключателя с магнитной защелкой. В основу его конструкции заложен принцип соосности электромагнита привода и вакуумной дугогасительной камеры в каждом полюсе выключателя. Включение выключателя осуществляется в следующей последовательности.
В исходном состоянии контакты вакуумной дугогасительной камеры разомкнуты за счет воздействия на них отключающей пружины 7 через тяговый изолятор 5. При прикладывании напряжения положительной полярности к катушке 9 электромагнита, в зазоре магнитной системы нарастает магнитный поток.
В момент, когда сила тяги якоря, создаваемая магнитным потоком, превосходит усилие пружины отключения 7, якорь 11 электромагнита вместе с тяговым изолятором 5 и подвижным контактом 3 вакуумной камеры начинает движение вверх, сжимая пружину отключения. При этом в катушке возникает двигательная противо-ЭДС, которая препятствует дальнейшему нарастанию тока, и даже несколько уменьшает его.
В процессе движения якорь набирает скорость около 1 м/с, что позволяет избежать предпробоев при включении и исключить дребезг контактов ВДК. При замыкании контактов вакуумной камеры, в магнитной системе остается зазор дополнительного поджатия равный 2 мм. Скорость движения якоря резко падает, так как ему приходится преодолевать еще и усилие пружины дополнительного контактного поджатия 6. Однако под воздействием усилия, создаваемого магнитным потоком и инерцией, якорь 11 продолжает двигаться вверх, сжимая пружину отключения 7 и пружину 6 дополнительного контактного поджатия.
В момент замыкания магнитной системы якорь соприкасается с верхней крышкой привода 8 и останавливается. После окончания процесса включения ток катушки привода отключается. Выключатель остается во включенном положении за счет остаточной индукции, создаваемой кольцевым постоянным магнитом 10, который удерживает якорь 11 в притянутом к верхней крышке 8 положении без дополнительной токовой подпитки.
Для отключения выключателя необходимо приложить к выводам катушки напряжение отрицательной полярности.
В настоящее время вакуумные выключатели стали доминирующими аппаратами для электрических сетей с напряжением 6-36 кВ. Так, доля вакуумных выключателей в общем количестве выпускаемых аппаратов в Европе и США достигает 70 %, в Японии – 100 %. В России в последние годы эта доля имеет постоянную тенденцию к росту, и в 1997 году превысила 50 %-ю отметку. Основными преимуществами ВВ (по сравнению с масляными и газовыми выключателями), определяющими рост их доли на рынке, являются:
– более высокая надежность;
– меньшие затраты на обслуживание
Т А Б Л И Ц А 5.1 - Сравнительная характеристика масляного, воздушного, вакуумного и элегазового выключателей
Вид выключателя | Безопасность при эксплуатации | Безопасность по отношению к окружающей среде | Обслуживание | Чувствительность к воздействию окружающей среды | Износостойкость | Размеры |
Масляный | Риск возникновения пожара или взрыва | Экологически не безопасен | Периодическая замена масла (необратимая деструкция масла при каждом отключении) | Свойства среды отключения могут ухудшаться под воздействием факторов окружающей среды (влажность, пыль и т.д.) | Посредственная | Относительно большие размеры устройства |
Воздушный | Взрыво- и пожаробезопасен | Безопасный | Частая замена дугогасительных контактов, периодическое техническое обслуживание механизма управления | Влияние температуры окружающей среды, необходимость в дополнительных установках | Средняя | Установка, требующая больших расстояний |
Продолжение таблицы 5.1
Вакуумный | Нет риска возникновения взрыва или внешний проявлений | Отсутствие загрязнения окружающей среды | Смазка механизмов управления в минимальном объеме | Нечувствительны: полностью запаянная герметичная камера | Высокая | Негабаритные |
Элегазовый | Нет риска возникновения взрыва или внешний проявлений | При утилизации или утечке экологически не безопасен | Смазка механизмов управления в минимальном объеме | Нечувствительны: полностью запаянная герметичная камера | Высокая | Небольшие |