Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками

Вопрос1 Классическая механика и границы ее применимости. Материальная точка. Система отсчета. Кинематические уравнения

Классическую механику подразделяют на кинематику, статику и динамику.

Материальная точка- тело, размерами которого можно пренебречь. Движение материальной точки по отношению к системе отсчета может быть задано векторным или координатным способами.

При векторном способе положение точки А, рис. 1, в момент времени t определяется ее радиусом вектором Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru , проведенным из начала координат до движущейся точки.

Закон движения дается векторным уравнением Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru . При координатном способе положение точки А определяется координатами x, y, z, а закон движения задается тремя уравнениями:

Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru

при этом Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru

Системой отсчета называется система координат, снабженная часами и жестко связанная с абсолютно твердым телом.

Вопрос 2 Траектория, путь, перемещение. Средняя и мгновенная скорости. Равномерное прямолинейное движение

Непрерывная линия, которую описывает точка при своем движении, называется траекторией. Путь – это длина траектории, пройденная точкой.

Перемещение- изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещением называют вектор, характеризующий это изменение

Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения

Мгновенная скорость Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru

Средняя скорость Vср=S/t

Вопрос 3 Ускорение. Нормальная и тангенциальная составляющие ускорения. Равнопеременное движение

Ускорение- быстрота изменения скорости

Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru

Тангенциальное ускорение — компонента ускорения, направленная по касательной к траектории движения. Характеризует изменение модуля скорости Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru

Нормальное ускорение возникает всегда при движении точки по траектории с ненулевой кривизной. Характеризует изменение скорости по направлению.

Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru = Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru

Равнопеременное движение — движение с постоянным ускорением.

V(t)=V0+at

x(t)=x0+V0t+at Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru /2

Вопрос Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru 4 Движение материальной точки по окружности. Угол поворота, угловая скорость, угловое ускорение

Рассмотрим движение материальной точки по окружности радиуса R Пусть за время Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru точка повернется на угол Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru , тогда угловая скорость

Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru ,

Угловое ускорение характеризует быстроту изменения угловой скорости, т.е.

Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками - student2.ru

Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками

Понятно, что линейные и соответствующие им угловые величины должны быть определенным образом связаны между собой. Найдем эти связи.

При повороте радиуса, проведенного в точку М (см. рис. 2), на угол φ точка пройдет по дуге окружности путь

s=rφ . (1)

За малое время Δt точка проходит расстояние Δs=rφ2−rφ1 , где φ2 и φ1 — углы поворота в конце и в начале интервала Δt. Разделив последнее равенство на Δt и учитывая, что ΔsΔt=υ и φ2−φ1Δt=ΔφΔt=ω, получим

υ=rω . (2)

Заметим, что соотношение (2) связывает между собой линейную и угловую скорости не только при равномерном движении точки по окружности, но- и при неравномерном движении тоже. Изменение модуля скорости точки за время Δt есть Δυ=rω2−rω1 , где ω2 и ω1 — угловые скорости в конце и в начале промежутка Δt. Разделим последнее равенство на Δt и учтем, что ΔυΔt=ak и ω2−ω1Δt=ΔωΔt=ε, тогда касательное ускорение

ak=rε . (3)

Соотношения (1), (2) и (3) дают для движущейся по окружности точки простую связь между линейными и угловыми величинами: линейная величина равна произведению радиуса окружности на соответствующую угловую величину. Эти соотношения получены нами для конкретной точки М колеса троллейбуса, но они справедливы и для любой другой точки вращающегося (как равномерно, так и неравномерно) тела.

Доп. Инф

При движении точки по кривой линейная скорость направлена по касательной к кривой и по модулю равна произведению угловой скорости на радиус кривизны кривой.

Наши рекомендации