Теоретическая механика

Новотроицк

УДК 531.8

Т 19

Степыко Т.В.Теоретическая механика. Методические рекомендации для выполнения контрольных работ для студентов специальности 150404- Металлургические машины и оборудование. Новотроицк: НФ МИСиС, 2008. – 40 с.

Даны методические рекомендации для выполнения контрольных работ по учебной дисциплине “Теоретическая механика”: часть I-“Cтатика и кинематика”, часть I- “Динамика”. Рассмотрены примеры решений каждой задачи.

Для каждой задачи представлены расчетные схемы и таблицы числовых данных.

Методические рекомендации рассмотрены и одобрены на заседании оборудования металлургических предприятий НФ МИСиС протокол № 7 от 29.02. 2008г.

СОДЕРЖАНИЕ

Общие методические указания…………………………..…………… 4

Статика……………………………………………………………………..6

Задача С1………………………………………………………………...6

Задача С2………………………………………………………………..10

Кинематика……………………………………………………….………..15

Задача К1………………………………………………………………..15

Задача К2………………………………………………………………..19

Динамика…………………………………………………………………..24

Задача Д1………………………………………………………………..24

Задача Д2………………………………………………………………. 28

Задача Д3 ……………………………………………………………….33

Список использованных источников………………………………..…38

Приложение……………………………………………………….…….39

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Теоретическая механика включает три раздела: статику, кинематику и динамику.

Для изучения учебной дисциплины “Теоретическая механика” необходимо иметь соответствующую математическую подготовку. Во всех разделах курса, начиная со статики, широко используется векторная алгебра. Необходимо уметь вычислять проекции векторов на координатные оси, находить геометрически и аналитически сумму векторов, вычислять скалярное и векторное произведения двух векторов и знать свойства этих произведений, а в кинематике и динамике — дифференцировать векторы. Надо также уметь свободно пользоваться системой прямоугольных декартовых координат на плоскости и в пространстве, знать, что такое единичные векторы (орты) этих осей и как выражаются составляющие вектора по координатным осям с помощью ортов.

Для изучения кинематики надо уметь дифференцировать функции одного переменного, строить графики этих функций, быть знакомым с понятиями о естественном трех­граннике, кривизне кривой и радиусе кривизны, знать основы тео­рии кривых 2-го порядка, изучаемой в аналитической геометрии.

Для изучения динамики надо уметь находить интегралы (неоп­ределенные и определенные) от простейших функций, вычислять частные производные и полный дифференциал функций нескольких переменных, а также уметь интегрировать дифференциальные урав­нения 1-го порядка с разделяющимися переменными и линейные дифференциальные уравнения 2-го порядка (однородные и неодно­родные) с постоянными коэффициентами.

При изучении материала дисциплины по учебнику необходимо, уяснить существо каждого излагаемого там вопроса. Главное — это понять изложенное в учебнике, а не «заучить».

Изучать материал рекомендуется по темам или по главам учебника. Сна­чала следует прочитать весь материал темы, особен­но не задерживаясь на том, что показалось не совсем понятным; часто это становится понятным из последующего. Затем надо вер­нуться к местам, вызвавшим затруднения, и внимательно разобрать­ся в том, что было неясно. Особое внимание при повторном чтении обратите на формулировки соответствующих определений, теорем и т. п.; в точных формулировках, как правило, бывает существен­но каждое слово и очень полезно понять, почему данное положение сформулировано именно так. Однако не следует стараться заучи­вать формулировки; важно понять их смысл и уметь изложить ре­зультат своими словами.

Необходимо также понять ход всех доказательств и разобраться в их деталях. Доказатель­ства надо уметь воспроизводить самостоятельно, что нетрудно сде­лать, поняв идею доказательства; пытаться просто их «заучивать» не следует, никакой пользы это не принесет.

При изучении дисциплины особое внимание следует уделить приоб­ретению навыков решения задач. Для этого, изучив материал дан­ной темы, надо сначала обязательно разобраться в решениях соот­ветствующих задач, которые приводятся в учебнике, обратив осо­бое внимание на методические указания по их решению.

Закончив изучение темы, нужно проверить, можете ли вы дать ответ на все вопросы программы курса по этой теме.

Указания по выполнению домашних заданий и контрольных работ приводятся ниже. К каждой задаче даются конкретные методические указания по ее решению, и приводится пример решения.

СТАТИКА

Задача С1

Жесткая рама (рисунки С 1. О — С 1.9, таблица C 1) закреплена в точке А шарнирно, а в точке В прикреплена или к невесомому стержню с шарнирами на концах, или к шарнирной опоре на катках.

В точке С к раме привязан трос, перекинутый через блок и несущий на конце груз весом Р = 25 кН. На раму действует пара сил с моментом М=60 кНм и две силы, значения, направления и точки приложения, которых указаны в таблице (например, в условиях № 1 на раму действуют сила F1 под углом 15° к горизонтальной оси, приложенная в точке D, и сила F2 под углом 60° к горизонтальнойоси, приложенная в точке Е т. д.).

Определить реакции связей в точках А, В, вызываемые действующими нагрузками. При окончательных расчетах принять а=0,5м.

Рекомендации. Задача С 1 — на равновесие тела под действием произвольной плоской системы сил. При ее решении следует учесть, что натяжения обеих ветвей нити, перекинутой через блок, когда трением пренебрегают, будут одинаковыми. Уравнение моментов будут болee простыми, если брать моменты относительно точки, где пересекаются линии действия двух реакций связей. При вычислении момента силы F часто удобно разложить ее на составляющие F' и F", для которых плечи легко определяются, и воспользоваться теоремой Вариньона; тогда mo (F)=mo(F')+ mo(F'')

теоретическая механика - student2.ru Рисунок С 1.0 теоретическая механика - student2.ru Рисунок С 1.1
теоретическая механика - student2.ru Рисунок С 1.2 теоретическая механика - student2.ru Рисунок С 1.3
теоретическая механика - student2.ru Рисунок С 1.4 теоретическая механика - student2.ru Рисунок С 1.5
теоретическая механика - student2.ru Рисунок С 1.6 теоретическая механика - student2.ru Рисунок С 1.7
теоретическая механика - student2.ru Рисунок С 1.8 теоретическая механика - student2.ru Рисунок С 1.9

Таблица С 1 Исходные данные к задаче С 1

    Силы теоретическая механика - student2.ru   теоретическая механика - student2.ru теоретическая механика - student2.ru теоретическая механика - student2.ru
F1 = 10 кН F2 = 20 кН F3 = 30 кН F4 = 40 кН
  Номер условия Точка приложения теоретическая механика - student2.ru ,град Точка приложения теоретическая механика - student2.ru ,град Точка приложения теоретическая механика - student2.ru ,град Точка приложения теоретическая механика - student2.ru ,град
Н - - - - K
- - D E - -
К - - - - E
- - K H - -
D - - - - E
- - H - - D
E - - K - -
- - D - - H
H - - D - -
- - E K - -

Пример С 1. Жесткая пластина ABCD (рисунок С 1) имеет в точке А неподвижную шарнирную опору, а в точке В — подвижную шарнирную опору на катках. Все действующие нагрузки и размеры по­казаны на рисунке.

    теоретическая механика - student2.ru   Рисунок С 1 Дано: F=25 кН, α=60°, Р=18 кН, γ=75°, М=50 Кн*м, β = 30°, а=0,5 м. Определить: реакции в точках А и В, вы­зываемые действующими на­грузками. Решение. 1. Рассмотрим равновесие пластины. Про­ведем координатные оси ху и изобразим действующие на пластину силы: силу F, пару сил с моментом М, натяжение троса Т (по модулю Т=Р) и реакции связей ХА, УА, Ra (реакцию неподвижной шарнирной опоры А изображаем двумя ее составляющими, реакция шарнирной опоры на катках направлена перпендикулярно опорной плоскости).  

2. Для полученной плоской системы сил составим три уравнения равновесия. При вычислении момента силы F относительно точки А воспользуемся теоремой Вариньона, т.е. разложим силу F на составляющие F', F" ( теоретическая механика - student2.ru , теоретическая механика - student2.ru ) и учтем, что теоретическая механика - student2.ru . Получим:

теоретическая механика - student2.ru теоретическая механика - student2.ru (1)

теоретическая механика - student2.ru теоретическая механика - student2.ru (2)

теоретическая механика - student2.ru теоретическая механика - student2.ru (3)

Подставив в составленные уравнения, числовые значения заданных величин и решив эти уравнения, определим искомые реакции.

Ответ; ХА=— 8,5 кН; УА—23,3 кН; RB=7,3 кН. Знаки указывают, что силы ХА и УА направлены противоположно показанным направлениям рисунка С 1.

Задача С 2

Конструкция состоит из жесткого угольника и стержня, кото­рые в точке С или соединены друг с другом шарнирно (рисунки С 2.0 - С 2.5), или свободно опираются друг о друга (рисунки С 2.6 — С 2.9), Внешними связями, наложенными на конструкцию, являются в точ­ке А или шарнир, или жесткая заделка; в точке В или невесомый стержень В В' (рисунки 0 и 1), или гладкая плоскость (рисунки 2 и 3), или шарнир (рисунки 4 — 9); в точке D или невесомый стержень DD' (рисунки 1, 2, 7), или шарнирная опора на катках (рисунок 9).

На каждую конструкцию действует: пара сил с моментом М = 60 кН*м, равномерно распределенная нагрузка интенсивности q = 20 кН/м и еще две силы. Эти силы, их направления и точки при­ложения указаны в таблице С 2а; там же в столбце «Участок» указано, на каком участке действует распределенная нагрузка (например, в условиях № 1 на конструкцию действуют сила F2 под углом 600 к горизонтальной оси, приложенная в точке L, сила F4 под углом 30" к горизонтальной оси, приложенная в точке Е, и нагрузка, распре­деленная на участке СК).

Определить реакции связей в точках А, В, С (для рисунка. 1, 2, 7, 9
еще и в точке D), вызванные заданными нагрузками. При окончательных расчетах принять а=0,2м. Направление распределенной
нагрузки на различных по расположению участках указано в таблице С 2
Рекомендации. Задача С 2 — на равновесие системы тел, находящихся под действием плоской системы сил. При ее решении можно или рассмотреть сначала равновесие всей системы в целом, а затем— равновесие одного из тел системы, изобразив его отдельно, илиже сразу расчленить систему ирассмотреть равновесие каждого из тел в отдельности, учтя при этом закон о равенстве действия и противодействия. В задачах, где имеется жесткая заделка, учесть, что ее реакция представляется силой, модуль и направление которой неизвестны, и парой сил, момент которой тоже неизвестен.

Таблица С 2 Исходные данные к задаче С 2

Участок на угольнике Участок на стержне
горизонтальный вертикальный Рис. 1,2,4,7,9 Рис. 0,3,5,6,8
  теоретическая механика - student2.ru   теоретическая механика - student2.ru   теоретическая механика - student2.ru   теоретическая механика - student2.ru

Таблица С 2 а Исходные данные к задаче С 2

    Силы теоретическая механика - student2.ru   теоретическая механика - student2.ru теоретическая механика - student2.ru теоретическая механика - student2.ru участок
F1 = 10 кН F2 = 20 кН F3 = 30 кН F4 = 40 кН
Номер условия Точка прило-жения теоретическая механика - student2.ru ,град Точка прило-жения теоретическая механика - student2.ru ,град Точка прило-жения теоретическая механика - student2.ru ,град Точка прило-жения теоретическая механика - student2.ru ,град  
К - - Н - - CL
- - L - - E CK
L - - K - - AE
- - K - - H CL
L - - E - - CK
- - L - - K AE
E - - K - - CL
- - H L - - CK
- - K - - E CL
H - - - - L CK
теоретическая механика - student2.ru   Рисунок С 2.0 теоретическая механика - student2.ru Рисунок С 2.1
теоретическая механика - student2.ru Рисунок С 2.2 теоретическая механика - student2.ru Рисунок С 2.3
теоретическая механика - student2.ru   Рисунок С 2.4 теоретическая механика - student2.ru Рисунок С 2.5
теоретическая механика - student2.ru Рисунок С 2.6 теоретическая механика - student2.ru   Рисунок С 2.7
теоретическая механика - student2.ru Рисунок С 2.8     теоретическая механика - student2.ru Рисунок С 2.9

Пример С 2.

теоретическая механика - student2.ru теоретическая механика - student2.ru теоретическая механика - student2.ru

а) б) в)

Рисунок С 2

На угольнике АВС (<АСВ = 900), конец А которого жестко заделан, в точке С опирается стержень DE (рисунок С 2, а). Стержень имеет в точке D неподвижную шарнирную опору и к нему приложена сила F, а к угольнику - равномерно распределенная на участке KB нагрузка интенсивности q и пара с моментом М.

Дано: F=10 кН, М=5 кНм, q=20 кН/м, а=0,2 м. Опреде­лить: реакции в точках А, С, D, вызванные заданными нагрузками.

Решение. 1. Для определения реакций расчленим систему и рассмотрим сначала равновесие стержня DE (рисунок С 2, б), Прове­дем координатные оси ху и изобразим действующие на стержень си­лы: силу F, реакцию N, направленную перпендикулярно стержню, и составляющие XD и УD реакции шарнира D. Для полученной плоской системы сил составляем три уравнения равновесия;

теоретическая механика - student2.ru теоретическая механика - student2.ru (1)

теоретическая механика - student2.ru теоретическая механика - student2.ru (2)

теоретическая механика - student2.ru теоретическая механика - student2.ru (3)

2. Теперь рассмотрим равновесие угольника (рисунок С 2, в). На него действуют сила давления стержня N', направленная противо­положно реакции N, равномерно распределенная нагрузка, которую заменяем силой Q, приложенной в середине участка KB (численно Q=q*4a=16 кН), пара сил с моментом М иреакция жесткой за­делки, слагающаяся из силы, которую представим составляющими ХА, YА, и пары с моментом МА. Для этой плоской системы сил тоже составляем три уравнения равновесия:

теоретическая механика - student2.ru теоретическая механика - student2.ru (4)

теоретическая механика - student2.ru теоретическая механика - student2.ru (5)

теоретическая механика - student2.ru теоретическая механика - student2.ru (6)

При вычислении момента силы N' разлагаем ее на составляю­щие теоретическая механика - student2.ru , теоретическая механика - student2.ru теоретическая механика - student2.ru и применяем теорему Вариньона. Подставив в состав­ленные уравнения, числовые значения заданных величин и решив систему уравнений (1)—(6),найдем искомые реакции. При реше­нии учитываем, что численно N'=N в силу равенства действия и противодействия. Ответ: N=21,7 кН,YD=-10,8 кН, XD=8,8 кН, XA=-26,8 кН, YA=24,7 кН, MA=-42,6 кНм. Знаки указывают, что силы YD, XА и момент МА направлены противоположно показанным на рисунках.

КИНЕМАТИКА

Задача К 1

Точка В движется в плоскости ху (рисунки К 1.0 — К 1.9, таблица К 1; траектория точки на рисунках показана условно). Закон движения точки задан уравнениями x=fl(t), y=f2(t), где х и у выражены в сантиметрах, t — в секундах.

Найти уравнение траектории точки; для момента времени t1=1с определить скорость и ускорение точки, а также ее касатель­ное и нормальное ускорения и радиус кривизны в соответствующей точке траектории.

Зависимость x=f1(t) указана непосредственно на рисунках, а зависимость y=f2(t) дана в таблице К 1 (для рисунков 0 — 2 в столбце 2, для рисунков 3 — 6 в столбце 3, для рисунков 7 — 9 в столбце 4).

Рекомендации. Задача К 1 относится к кинематике точки и решается с помощью формул, по которым определяются скорость и ускорение точки в декартовых координатах (координатный способ задания движения точки), а также формул, по которым определяются каса­тельное и нормальное ускорения точки.

В данной задаче все искомые величины нужно определить толь­ко для момента времени t1=l с. В некоторых вариантах задачи при определении траектории или при последующих расчетах (для их упрощения) следует учесть известные из тригонометрии формулы:

cos 2α = 1— 2 sin2 α=2 cos2 α—1; sin 2α=2 sin α cos α.

теоретическая механика - student2.ru Рисунок К 1.0 теоретическая механика - student2.ru Рисунок К 1.1 теоретическая механика - student2.ru Рисунок К 1.2
теоретическая механика - student2.ru Рисунок К 1.3 теоретическая механика - student2.ru Рисунок К 1.4 теоретическая механика - student2.ru Рисунок К 1.5
теоретическая механика - student2.ru Рисунок К 1.6 теоретическая механика - student2.ru Рисунок К 1.7 теоретическая механика - student2.ru Рисунок К 1.8

теоретическая механика - student2.ru

Рисунок К 1.9

Таблица К 1 Исходные данные к задаче К 1

Номер условия у=f2(t)
Рис. 0-2 Рис. 3-6 Рис. 7-9
теоретическая механика - student2.ru теоретическая механика - student2.ru теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru теоретическая механика - student2.ru

Пример К 1. Даны уравнения движения точки в плоскости ху:

теоретическая механика - student2.ru ; теоретическая механика - student2.ru

(х, у— в сантиметрах, t — в секундах).

Определить уравнение траектории точки; для момента времени t=1с найти скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории.

Решение 1. Для определения уравнения траектории точки ис­ключим из заданных уравнений движения время t. Поскольку t вхо­дит в аргументы тригонометрических функций, где один аргумент вдвое больше другого, используем формулу:

теоретическая механика - student2.ru или теоретическая механика - student2.ru (1)

Из уравнений движения находим выражения соответствующих функций и подставляем в равенство (1). Получим:

теоретическая механика - student2.ru теоретическая механика - student2.ru

следовательно,

теоретическая механика - student2.ru

Отсюда окончательно находим следующее уравнение траекто­рии точки (параболы, рисунок KI):

теоретическая механика - student2.ru (2)

Скорость точки найдем по ее проекциям на координатные оси:

  теоретическая механика - student2.ru Рисунок К 1   теоретическая механика - student2.ru   теоретическая механика - student2.ru   теоретическая механика - student2.ru

и при t=1с

теоретическая механика - student2.ru см/с, теоретическая механика - student2.ru см/с, теоретическая механика - student2.ru см /с. (3)

3. Аналогично найдем ускорение точки:

теоретическая механика - student2.ru

теоретическая механика - student2.ru

теоретическая механика - student2.ru

и при t =1 с

теоретическая механика - student2.ru см/с2, теоретическая механика - student2.ru см/с2, теоретическая механика - student2.ru = 0,88 см/с2. (4)

4. Касательное ускорение найдем, дифференцируя по времени, равенство теоретическая механика - student2.ru . Получим:

теоретическая механика - student2.ru (5)

и теоретическая механика - student2.ru теоретическая механика - student2.ru

Числовые значения всех величин, входящих в правую часть вы­ражения (5), определены и даются равенствами (3) и (4). Подста­вив в (5) эти числа, найдем сразу, что при t1 =1 с теоретическая механика - student2.ru см/с2.

5. Нормальное ускорение точки теоретическая механика - student2.ru . Подставляя
сюда найденные числовые значения теоретическая механика - student2.ru и теоретическая механика - student2.ru , получим, что при t =1с теоретическая механика - student2.ru = 0,58 см/с2.

6. Радиус кривизны траектории теоретическая механика - student2.ru . Подставляя сюда чис­ловые значения теоретическая механика - student2.ru и теоретическая механика - student2.ru , найдем, что при t =1 с теоретическая механика - student2.ru = 3,05см.

Ответ: теоретическая механика - student2.ru = 1,33 см/с, теоретическая механика - student2.ru = 0,88 см/с2, теоретическая механика - student2.ru =0,66 см/с2, теоретическая механика - student2.ru =0,58 см/с2, теоретическая механика - student2.ru =3,05 см.

Задача К 2

Прямоугольная пластина (рисунки К 2.0 — К 2.4) или круглая плас­тина радиуса R = 60 см (рисунки К 2.5 — К 2.9) вращается вокруг непо­движной оси по закону теоретическая механика - student2.ru заданному в таблице К 2. Положи­тельное направление отсчета угла φ показано на рисунках дуговой стрелкой. На рисунках 0, 1, 2, 5, 6 ось вращения перпендикулярна плос­кости пластины и проходит через точку О (пластина вращается в своей плоскости); на рисунках 3, 4, 7, 8, 9 ось вращения 001лежит в плоскости пластины (пластина вращается в пространстве).

По пластине вдоль прямой BD (рисунки 0—4) или по окружности радиуса R (рисунки 5—9) движется точка М; закон ее относительного движения, т. е, зависимость s=AM=f2(t) (s выражено в сантимет­рах, t—в секундах), задан в таблице отдельно для рисунков 0—4 и для рисунков 5—9; там же даны размеры b и I. На рисунках точка М пока­зана в положении, при котором s=AM>0 (при s<0 точка М нахо­дится по другую сторону от точки A).

Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1с.

Таблица К 2 Исходные данные к задаче К 2

Номер условия Для всех рисунков теоретическая механика - student2.ru Для рисунков 0-4 Для рисунков 5-9
b, cм теоретическая механика - student2.ru l теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru R теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru 4/3R теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru R теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru R теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru R теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru R теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru 4/3R теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru R теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru R теоретическая механика - student2.ru
теоретическая механика - student2.ru теоретическая механика - student2.ru 4/3R теоретическая механика - student2.ru

Рекомендации. Задача К 2 — на сложное движение точки. Для ее ре­шения воспользоваться теоремами о сложении скоростей и о сложе­нии ускорений. Прежде чем производить все расчеты, следует по условиям задачи определить, где находится точка М на пластине в момент времени t1 = lc, и изобразить точку именно в этом поло­жении (а не в произвольном, показанном на рисунках к задаче),

В случаях, относящихся к рисункам 5—9, при решении задачи не подставлять числового значения R, пока не будут определены по­ложение точки М в момент времени t1 =1 с и угол между радиу­сами СМ и СА в этот момент.

теоретическая механика - student2.ru Рисунок К 2.0 теоретическая механика - student2.ru Рисунок К 2.1 теоретическая механика - student2.ru Рисунок К 2.2
теоретическая механика - student2.ru Рисунок К 2.3 теоретическая механика - student2.ru Рисунок К 2.4 теоретическая механика - student2.ru Рисунок К 2.5
теоретическая механика - student2.ru Рисунок К 2.6 теоретическая механика - student2.ru Рисунок К 2.7
теоретическая механика - student2.ru Рисунок К 2.8 теоретическая механика - student2.ru Рисунок К 2.9
       

ПримерК 2. Шар радиуса R (рисунок К 2, а) вращается вокруг сво­его диаметра АВ по закону теоретическая механика - student2.ru (положительное направление отсчета угла теоретическая механика - student2.ru показано на рисунке К 2, а дуговой стрелкой). По дуге

теоретическая механика - student2.ru

Рисунок К 2

большого круга («меридиану») ADB движется точка М по закону s = AM = f2(t); положительное направление отсчета s от А к D.

Дано: R=0,5 м, теоретическая механика - student2.ru , теоретическая механика - student2.ru ( теоретическая механика - student2.ru — в радиа­нах,s—в метрах, t — в секундах). Определить: теоретическая механика - student2.ru и теоретическая механика - student2.ru в мо­мент времени t1=1с.

Решение. Рассмотрим движение точки М как сложное, считая ее движение по дуге ADB относительным (АВ—относительная тра­ектория точки), а вращение шара — переносным движением. Тогда абсолютная скорость теоретическая механика - student2.ru и абсолютное ускорение теоретическая механика - student2.ru точки най­дутся по формулам:

теоретическая механика - student2.ru , теоретическая механика - student2.ru , (1)

где, в свою очередь, теоретическая механика - student2.ru теоретическая механика - student2.ru

Определим все характеристики относительного и переносного движений.

1. Относительное движение. Это движение происхо­дит по закону

s = AM= теоретическая механика - student2.ru . (2)

Сначала установим, где будет находиться точка М на дуге ADB в момент времени t1. Полагая в уравнении (2) t=1 с, получим:

теоретическая механика - student2.ru . Тогда теоретическая механика - student2.ru АСМ теоретическая механика - student2.ru

или теоретическая механика - student2.ru ВСМ=30°. Изображаем на рисунке К 2, а точку в положении, определяемом этим углом (точка M1).

Теперь находим числовые значения теоретическая механика - student2.ru :

теоретическая механика - student2.ru ; теоретическая механика - student2.ru ; теоретическая механика - student2.ru ,

где теоретическая механика - student2.ru — радиус кривизны относительной траектории, т. е. дуги ADB, Для момента времени t1=1с, учитывая, что R=0,5 м, получим:

теоретическая механика - student2.ru м/с; теоретическая механика - student2.ru м/с2; теоретическая механика - student2.ru м/с2 (3)

Знаки показывают, что вектор v0T направлен в сторону поло­жительного отсчета расстояния s, а вектор теоретическая механика - student2.ru —в противополож­ную сторону; вектор теоретическая механика - student2.ru теоретическая механика - student2.ru направлен к центру С дуги ADВ. Изобра­жаем все эти векторы на рисунке К 2, а. Для наглядности приведен рисунок К 2, б, где дуга ADB совмещена с плоскостью чертежа.

2. Переносное движение. Это движение (вращение) про­исходит по закону теоретическая механика - student2.ru теоретическая механика - student2.ru . Найдем угловую скорость ω и уг­ловое ускорение ε переносного вращения: теоретическая механика - student2.ru теоретическая механика - student2.ru и при t1=1с

теоретическая механика - student2.ru (4)

Наши рекомендации