Формула Мора для вычисления прогиба
Пусть необходимо найти прогиб точки В, т.е. перемещение vB.(рис.16.2)
Рис. 16.2.
Для решения задачи используем применим закон сохранения энергии в варианте принципа возможных перемещений. В качестве возможных выберем прогиб (здесь и далее величины, характеризующие основную задачу будут снабжаться индексом q).
Рассмотрим фиктивную задачу (рис.16.3)
Рис. 16.3.
Вычислим работу силы на перемещении :
.
Согласно закона сохранения энергии эта работа должна равняться работе внутренних сил. Подсчитаем её.
Рассмотрим рис.16.2 и рис.16.3. Выделим малый элемент балки (он зачернен на рис 16.2 и рис.16.3). Он удлиняется на величину .
Рис. 16.4.
Рассмотрим этот же малый элемент под действием напряжений растяжения (здесь и далее величины, характеризующие фиктивную задачу, будут снабжаться индексом Т), которые возникают, под действием силы Т. Вычислим - работу этих напряжений на перемещении :
Согласно определению:
Таким образом,
Здесь – объем малого элемента.
Работа по удлинению всех элементов балки будет:
.
В случае балки имеем:
.
По закону Гука:
.
Отсюда:
Запишем закон сохранения энергии:
Отсюда вытекает формула Мора:
(16.2)
Здесь - искомый прогиб в точке B (от рабочих нагрузок);
=1 – единичная сила, приложенная в интересующем нас направлении искомого прогиба в интересующей нас точке В.
- изгибающий момент в фиктивной задаче о приложении к балке силы Т в точке В.
- изгибающий момент от рабочих нагрузок.
Физический смысл формулы Мора заключается в следующем: работа силы Т на искомом перемещении vВ равна работе внутренних сил, вызванных этой силой, на деформациях от внешних сил.
Примечания.
1. Работой касательных напряжений обычно пренебрегают ввиду ее малости по сравнению с W.
2. При необходимости вычисления угла наклона балки α вместо единичной фиктивной силы Т необходимо прикладывать единичный момент m в интересующей нас точке. Формула Мора примет вид
.
Методы вычисления интегралов. Формулы трапеций и Симпсона
Для приближенного вычисления интегралов существует много разных методов. Пусть надо найти:
Для вычисления интеграла Мора часто используют метод Верещагина. Однако более удобными являются приближенные методы.
Рис. 16.5
Формула трапеций
Разобьем интервал на малые интервалы (например, на рис.16.5. их четыре).
Поскольку по геометрическому смыслу интеграл представляет собой площадь фигуры mnkl, то С можно вычислить приближенно, представив ее в виде суммы площадей четырех трапеций:
(16.3)
Формула Симпсона
Формула Симпсона намного точнее формулы трапеций (хотя может показаться менее удобной). Она имеет вид:
(16.4)
При этом в отличие от метода трапеций, отрезок а должен разбиваться на равные интервалы . Аналогично, должно быть
Примечание. Для прикидочных грубых оценок можно использовать формулу:
.