Сила инерции. Принцип Д'Аламбера
В ряде случаев возникает необходимость описать движение, покой или равновесие тела, находящегося в неинерциальной системе отсчета. Например, требуется выяснить какие проблемы могут возникнуть у человека, находящегося в кабине космического корабля. Французский физик Д'Аламбер сформулировал простой принцип, позволяющий отвечать на вопросы о поведении тела в неинерциальной системе. Рассмотрим тело, которое находится в неинерциальной системе, движущейся относительно инерциаль-ной системы с ускорением ас.
Векторная величина, равная произведению массы тела на ускорение системы и направленная в сторону, противоположную ускорению системы, называется силой инерции:
Сила инерции не является реальной силой, так как она не действует со стороны какого либо тела. Однако в неинерциальной системе ее можно (и нужно!) рассматривать, как обычную силу. При этом можно «забыть» о том, что система неинерциальна.
Д'Аламбер установил, что если ко всем реальным силам (действующим со стороны других тел) добавить силу инерции, то в неинерциальной системе можно использовать все законы и формулы, которые справедливы для инерциальных систем.
Пример
Пусть тело массой т подвешено на нити в кабине космического корабля, который стартует с Земли и поднимается вверх с ускорением «а».
Система отсчета, связанная с таким кораблем является неинерционной и к ней применим принцип Д'Аламбера (ускорение системы — это ускорение корабля: ас = а). На тело действуют сила тяжести со стороны земли (mg) и сила натяжения нити (Т) (рис. 8.1). Добавим к ним силу инерции Fh = m-a, которая направлена вниз (в сторону, обратную ускорению). Теперь можно описать покой тела относительно корабля: Т+ mg + FH = 0. Учитывая направления сил, получим уравнение для их величин: Т — mg — FK = 0. Откуда найдем натяжение нити, удерживающей тело:
Установлено, что сила инерции неотличимаот силы гравитации (силы тяготения). В рассматриваемом примере это означает, что никакие опыты, поставленные внутри корабля, не смогут дать ответ на вопрос, какая из ситуаций имеет место:
• либо мы находимся не в корабле, а на какой-то планете, где ускорение свободного падения равно g + a;
• либо мы движемся с ускорением g + а на космическом корабле вдали от каких-либо планет (гравитационные силы отсутствуют);
• либо мы стартуем с Земли, поднимаясь с ускорением «а».
Во всех этих случаях результаты любого опыта будут совершенно одинаковы.
Сила тяжести. Вес тела
Сила тяжести
Так как сила тяготения и сила инерции неотличимы, то при использовании неинерциальной системы их обычно складывают (как вектора) и эту сумму называют силой тяжести.
Вестела
Рассмотрим, что происходит, когда некоторый груз кладут на горизонтальную плоскость (опору). В первый момент после того, как груз отпустили, он начинает двигаться вниз под действием силы тяжести (рис. 8.3). Плоскость прогибается и возникает сила упругости (реакция опоры), направленная вверх. После того, как сила упругости (F ) уравновесит силу тяжести, опускание тела и прогиб опоры прекратятся.
Прогиб опоры возник поддействием тела, следовательно, со стороны тела на опору действует некоторая сила (Р), которую называют весом тела (рис. 8.3, б). По третьему закону Ньютона вес
Вместо опоры можно использовать подвес.
Весом тела называют силу Р, с которой тело действует на неподвижную относительно него горизонтальную опору (или неподвижный относительно него подвес).
Вес не следует путать с массой тела. Масса тела характеризует его инертные свойства и не зависит ни от силы тяготения, ни от ускорения, с которым оно движется. Вес тела характеризует силу, с которой оно действует на опору и зависит как от силы тяготения, так и от ускорения движения. Например, на Луне вес тела примерно в 6 раз меньше, чем вес тела на Земле. Масса же в обоих случаях одинакова и определяется количеством вещества в теле.
Вес тела — понятие скорее инженерное, чем физическое, и используется не часто. Например, при проектировании моста указывают вес, который он должен выдерживать. В быту понятие «вес» используется, как правило, некорректно, поскольку имеется в виду масса тела. Например, когда говорят о весовых категориях в спорте, то подразумевают не силу, с которой спортсмен давит на помост, а его массу. В то же время, говоря о весе поднятой штанги, понятие «вес» употребляют совершенно правильно, так как речь идет о силе, с которой штанга действует на человека. Существующая путаница в употреблении понятия «вес» не влечет никаких отрицательных последствий, так как в каждой области люди интуитивно понимают, что имеется в виду.
В быту, технике, спорте вес часто указывают не в ньютонах (Н), а в килограммах силы (кгс). Переход от одной единицы к другой осуществляется по формуле
1кгс = 9,8Н