Движение жидкостей в трубопроводах

Классификация трубопроводов

Роль трубопроводных систем в хозяйстве любой страны, отдельной корпорации или просто отдельного хозяйства трудно переоценить. Системы трубопроводов в настоящее время являются самым эффективным, надёжным и экологически чистым транспортом для жидких и газообразных продуктов. Со временем их роль в развитии научно-технического прогресса возрастает. Только с помощью трубопроводов достигается возможность объе­динения стран производителей углеводородного сырья со странами потребителями. Большая доля в перекачке жидкостей и газов по праву принадлежит системам газопрово­дов и нефтепроводов, но значительную роль играют такие системы как водоснабжение и канализация, теплоснабжение и вентиляция, добыча некоторых твёрдых ископаемых и их гидротранспорт. Практически в каждой машине и механизме значительная роль принад­лежит трубопроводам.

По своему назначению трубопроводы принято различать по виду транспортируемой по ним продукции:

газопроводы,

- нефтепроводы,

- водопроводы, воздухопроводы,

- продуктопроводы.

По виду движения по ним жидкостей трубопроводы можно разделить на две катего­рии:

напорные трубопроводы,

безнапорные (самотёчные) трубопроводы.

Также трубопроводы можно подразделить по виду сечения: на трубопроводы круг­лого и не круглого сечения (прямоугольные, квадратные и другого профиля). Трубопро­воды можно разделить и по материалу, из которого они изготовлены: стальные трубопро­воды, бетонные, пластиковые и др.

Дать полную и исчерпывающую классификацию трубопроводов вряд ли удастся из-за многообразия их функций и областей использования. Нас будут интересовать лишь те классификации, которые влияют на принятые методы и способы описания движения по ним жидкостей и газов.

Простой трубопровод

Основным элементом любой трубопроводной системы, какой бы сложной она ни была, является простой трубопровод. Классическим определением его будет- простым

трубопроводом является трубопровод, собранный из труб одинакового диаметра и качест­ва его внутренних стенок, в котором движется транзитный поток жидкости, и на котором нет местных гидравлических сопротивлений.

При напорном движении жидкости простой трубопровод работает полным

сечением Движение жидкостей в трубопроводах - student2.ru = const. Размер

Движение жидкостей в трубопроводах - student2.ru сечения трубопровода (диаметр или ве­личина гидравлического радиуса), а так­же его протяжённость (длина) трубопровода (/, L) являются основными геометрическими характеристиками трубопровода. Основными технологическими характеристиками тру­бопровода являются расход жидкости в трубопроводе Q и напор Движение жидкостей в трубопроводах - student2.ru (на головных сооруже­ниях трубопровода, т.е. в его начале). Большинство других характеристик простого тру­бопровода являются, не смотря на их важность, производными характеристиками. По­скольку в простом трубопроводе расход жидкости транзитный (одинаковый в начале и конце трубопровода), то средняя скорость движения жидкости в трубопроводе постоянна Движение жидкостей в трубопроводах - student2.ru . Для установившегося движения жидкости по трубопроводу средняя скорость движения жидкости определяется по формуле Шези:

Движение жидкостей в трубопроводах - student2.ru 5

где: Движение жидкостей в трубопроводах - student2.ru - скоростной коэффициент Шези,

Движение жидкостей в трубопроводах - student2.ru - гидравлический радиус сечения, для круглого сечения при полном заполнении жидкостью Движение жидкостей в трубопроводах - student2.ru

Движение жидкостей в трубопроводах - student2.ru - гидравлический уклон.

Полагая, что весь имеющийся напор на головных сооружениях (в начале) трубопро­вода тратится на преодоление сил трения в трубопроводе (в простом трубопроводе это по­тери напора по длине Движение жидкостей в трубопроводах - student2.ru ), уравнение движения жидкости (Бернулли) примет вид:

Движение жидкостей в трубопроводах - student2.ru

Расход жидкости в трубопроводе:

Движение жидкостей в трубопроводах - student2.ru

Обозначив: Движение жидкостей в трубопроводах - student2.ru , получим основное уравнение простого трубопровода:

Движение жидкостей в трубопроводах - student2.ru

где: К - модуль расхода - расход жидкости в русле заданного сечения при гид­равлическом уклоне равном единице (иначе модуль расхода называют расходной характе­ристикой трубопровода). Другой и более известный вид основного уравнения простого трубопровода получим, решив уравнение относительно напора:

Движение жидкостей в трубопроводах - student2.ru

Величину Движение жидкостей в трубопроводах - student2.ru называют удельным сопротивле­нием трубопровода, Движение жидкостей в трубопроводах - student2.ru - - его полным сопротив­лением

График уравнения простого трубопровода Движение жидкостей в трубопроводах - student2.ru носит название его гидравлической харак­ Движение жидкостей в трубопроводах - student2.ru теристики. Вид гидравлической характеристики зави­сит от режима движения жидкости в трубопроводе: при ламинарном движении жидкости гидравлическая характеристика трубопровода - прямая линия, проходящая через начало координат (1). При турбулентном режиме гидравлическая характеристика - парабола (2).

Если на трубопроводе собранном из труб одинакового диаметра имеются местные сопротивления, то такой трубопровод можно привести к простому трубопроводу эквива­лентной длины Движение жидкостей в трубопроводах - student2.ru

Движение жидкостей в трубопроводах - student2.ru

8.3. Сложные трубопроводы

К сложным трубопроводам следует относить те трубопроводы, которые не подходят к категории простых трубопроводов, т.е к сложным трубопроводам следует отнести:

трубопроводы, собранные из труб разного диаметра (последовательное соедине­ние трубопроводов),

трубопроводы, имеющие разветвления: параллельное соединение трубопроводов, сети трубопроводов, трубопроводы с непрерывной раздачей жидкости.

Последовательное соединение трубопроводов. При последовательном соединении

трубопроводов конец предыдущего просто­го трубопровода одновременно является началом следующего простого трубопрово­да. В сложном трубопроводе, состоящем из последовательно соединённых простых Движение жидкостей в трубопроводах - student2.ru трубопроводов, последние в литературе на­зываются участками этого трубопровода. Расход жидкости во всех участках сложного трубопровода остаётся одинаковым Q = const. Общие потери напора во всём трубопрово­де будут равны сумме потерь напора во всех отдельных его участках.

Движение жидкостей в трубопроводах - student2.ru

Движение жидкостей в трубопроводах - student2.ru где Движение жидкостей в трубопроводах - student2.ru - потери напора на Движение жидкостей в трубопроводах - student2.ru - том участке трубопро-

вода.

Таким образом, потери напора в трубопроводе, состоящем из последовательно со­единённых друг с другом участков равны квадрату расхода жидкости в трубопроводе ум­ноженному на сумму удельных сопротивлений всех участков.

Гидравлическая характеристика трубопровода состоящего из последовательно со­единённых участков представляет собой графическую сумму (по оси напоров) гидравли­ческих характеристик всех отдельных участков. На рисунке кривая 1 представляет гид­равлическую характеристику 1-го участка трубопровода, кривая 2 - гидравлическую ха­рактеристику 2-го участка, кривая 3 - сумму гидравлических характеристик обеих участ­ков.

Сложный трубопровод, состоящий из последовательно соединённых простых трубо­проводов можно свести к простому трубопроводу с одинаковым (эквивалентным) диамет­ром, при этом длины участков будут пересчитываться, чтобы сохранить реальные гидрав­лические сопротивления участков трубопровода.

Так приведённая длина Движение жидкостей в трубопроводах - student2.ru - того участка Движение жидкостей в трубопроводах - student2.ru будет:

Движение жидкостей в трубопроводах - student2.ru

Следует отметить, что величина скоростного напора также зависит от диаметра трубопровода, и при определении приведённой длины участка мы вносим некоторую

ошибку, которая будет тем большей, чем больше разница в величинах фактического и эк­вивалентного диаметров. В таких случаях можно рекомендовать другой, более сложный способ.

Параллельное соединение трубопроводов. Схема прокладки параллельных трубо­проводов используется в тех случаях, когда на трассе магистрального трубопровода есть

участки, где требуется уменьшить гидрав­лические сопротивления трубопровода (вы­сокие перевальные точки трубопровода) или при заложении трубопровода в трудно­ Движение жидкостей в трубопроводах - student2.ru доступных местах (переход через реки и др.). При параллельном соединении трубо­проводов имеются две особые точки, называемые точками разветвления. В этих точках находятся концы параллельных ветвей трубопровода (точки А и В). Будем считать, что жидкость движется слева направо, тогда общий для всех ветвей напор в точке А будет больше напора в другой общей для всех ветвей трубопровода точке В (НА Движение жидкостей в трубопроводах - student2.ru Н к ). В точке А поток жидкости растекается по параллельным ветвям, а в точке В вновь собирается в еди­ный трубопровод. Каждая ветвь может иметь различные геометрические размеры: диа­метр и протяжённость (длину). Поскольку вся система трубопроводов является закрытой, то поток жидкости в данной системе будет транзитным, т.е.

Движение жидкостей в трубопроводах - student2.ru

Жидкость движется по всем ветвям при одинаковой разности напоров:

Движение жидкостей в трубопроводах - student2.ru > тогда расход жидкости по каждой ветви можно записать в виде:

Движение жидкостей в трубопроводах - student2.ru

Поскольку ветвей в системе п,, а число неизвестных в системе уравнений будет п+1, включая напор, затрачиваемый на прохождение жидкости по всем ветвям Движение жидкостей в трубопроводах - student2.ru , то в каче­стве дополнительного уравнения в системе будет использовано уравнение неразрывности:

Движение жидкостей в трубопроводах - student2.ru

При решении системы уравнений можно воспользоваться соотношением:

Движение жидкостей в трубопроводах - student2.ru

Для построения гидравлической характери­стики системы параллельных трубопроводов можно воспользоваться методом графического суммирования. Суммирование осуществляется по Движение жидкостей в трубопроводах - student2.ru оси расходов Q. т.к. Движение жидкостей в трубопроводах - student2.ru

Трубопроводы с непрерывным (распределённым расходом). В данном случае пред­полагается, что вдоль всей длины трубопровода располагаются одинаковые равномерно

распределённые потребители жидкости. Классиче­ским примером такого трубопровода может слу­жить оросительная система. В начальной точке трубопровода напор составляет Н. В общем слу­чае, расход по трубопроводу состоит из транзит­ного Qm и расхода Qp ,который непрерывно раз­ Движение жидкостей в трубопроводах - student2.ru даётся по всей длине трубопровода.

Тогда в некотором сечении трубопровода на расстоянии х от его начала расход будет равен:

Движение жидкостей в трубопроводах - student2.ru

Тогда гидравлический уклон в сечении х на малом отрезке dx:

Движение жидкостей в трубопроводах - student2.ru

Уравнение падения напора вдоль элемента dx запишется следующим образом:

Движение жидкостей в трубопроводах - student2.ru

После интегрирования от 0 до / получим:

Движение жидкостей в трубопроводах - student2.ru

и при Движение жидкостей в трубопроводах - student2.ru : Движение жидкостей в трубопроводах - student2.ru

Сети трубопроводов. Если магистральные трубопроводы принято рассматривать как сред­ства внешнего транспорта жидкостей и газов, то сети используются в качестве оборудования для внутреннего транспорта жидких или газообраз­ных продуктов. По направлению движения жидкости (газа) сети различают на сборные и раздаточные (распределительные). В сборных сетях имеется группа источников возникнове­ Движение жидкостей в трубопроводах - student2.ru ния жидкости (газа). Жидкость от этих источни­ков направляется в своеобразные узлы сбора и от­туда - в магистральный трубопровод. Классиче­ским примером сборной сети может служить неф-тесборная система со скважин, канализационная сеть. В раздаточных (распределительных) сетях жидкость или газ поступает из магистрального трубопровода и по сети распределяется по потре­бителям (абонентам). Распространённым приме­ Движение жидкостей в трубопроводах - student2.ru ром распределительной сети является система во­доснабжения. К такому же типу сетей можно так­же отнести систему принудительной вентиляции,

где воздух подаётся в служебные помещения или на рабочие места. К такому же типу се­тей можно отнести систему теплоснабжения и др. Сети строятся в населённых пунктах, на предприятиях, отдельных территориях. Трубы в таких системах могут изготавливаться из различных материалов в зависимости от технологических требований, предъявляемых к сетям. В сборных сетях источники жидкости и газа располагают напором, обеспечиваю­щим движение жидкости (газа) до магистралей. Если напоры недостаточны, то создаются специальные, узлы, где напор обеспечивается принудительным образом. Имеется, по крайней мере, две группы задач для гидравлического расчёта сетей: проектирование но­вых сетей и расчёт пропускной способности существующих сетей. Принципы расчёта по­хожи. В основе расчётных формул положены уравнения Дарси-Вейсбаха и Шези. Предва­рительно в сети выбирается ветвь с наибольшей нагрузкой (расход и напор). Эта ветвь рассматривается как своеобразный трубопровод, который, в общем случае можно отнести к категории последовательного соединения простых трубопроводов. Другие участки рас-

считываются самостоятельно. После завершения расчётных работ, осуществляется про­верка соответствия результатов расчётов в узлах сети. После анализа расхождений резуль­татов решений в узлах сети осуществляется корректировка исходных данных. Таким обра­зом, метод итераций является наиболее приемлемым для расчёта сетей.

Трубопроводы некруглого профиля. Подавляющее большинство трубопроводов со­бирается из круглых труб. Преимущество круглого сечения очевидны: круглое сечение обладает максимальной пропускной способностью и минимальным гидравлическим со­противлением. Так гидравлический радиус для круглого сечения: Движение жидкостей в трубопроводах - student2.ru

для треугольного сечения Движение жидкостей в трубопроводах - student2.ru для квадратного сечения Движение жидкостей в трубопроводах - student2.ru

для шестиугольного сечения Движение жидкостей в трубопроводах - student2.ru

Тем не менее, трубы некруглого сечения применяются в промышленности там, где потери напора не играют особой роли. Это, в первую очередь, воздуховоды с малыми ско­ростями движения воздуха, и т.д.

Трубопроводы, работающие под вакуумом (сифоны). Сифоном называется такой са­мотёчный трубопровод, часть которого располагается выше уровня жидкости в резервуа­ре. Действующий напор представляет собой разницу уровней в резервуарах Az. Для приведения сифона в действие необходимо предварительно откачать из си­фона воздух и создать в нём разряжение. При этом жид­кость поднимется из резервуара А до верхней точки сифона, после чего жидкость начнёт двигаться по нис­падающей части трубопровод в резервуар В. Другой ме­ Движение жидкостей в трубопроводах - student2.ru тод запуска сифона - заполнить его жидкостью извне. Запишем уравнение Бернулли для двух сечений а-а и b-b относительно плоскости сравне­ния О - О.

Движение жидкостей в трубопроводах - student2.ru

Поскольку: Движение жидкостей в трубопроводах - student2.ru , то:

Движение жидкостей в трубопроводах - student2.ru ?

Движение жидкостей в трубопроводах - student2.ru

Критическим сечением в сифоне будет сечение х - х в верхней точке сифона. Давле­ние в этой точке будет минимальным и для нормальной работы сифона необходимо, что­бы оно выло выше упругости паров перекачиваемой по сифону жидкости.

Движение жидкостей в трубопроводах - student2.ru

Трубопроводы со стенками из упругого материала. В практике предприятий нефтя­ной отрасли нередки случаи использования специальных трубопроводов, стенки которых деформируются при изменении давления в перекачиваемой по ним жидкости. К трубо­проводам такого типа относятся мягкие и гибкие рукава, резиновые и армированные шланги. Опыты Фримана показали, что в данных случаях можно пользоваться формулой аналогичной формуле Дарси-Вейсбаха:

' > , и Движение жидкостей в трубопроводах - student2.ru

где; Движение жидкостей в трубопроводах - student2.ru можновзять из таблицы:

Характеристика трубопровода Величина rj

Гладкие резиновые рукава 0,000860

Обыкновенные резиновые рукава 0,000899

Очень гладкие, прорезинненые внутри 0,000884

Шероховатые внутри 0,021300

Кожаные 0,013700

Для упругих деформируемых рукавов и шлангов В формулу Дарси-Веёсбаха следует ввести необходимые поправки.

Движение жидкостей в трубопроводах - student2.ru

Наши рекомендации

Характеристика трубопровода Величина rj
Гладкие резиновые рукава 0,000860
Обыкновенные резиновые рукава 0,000899
Очень гладкие, прорезинненые внутри 0,000884
Шероховатые внутри 0,021300
Кожаные 0,013700
Для упругих деформируемых рукавов и шлангов В формулу Дарси-Веёсбаха следует ввести необходимые поправки.
Номинальный диа­метр в мм Средний внутренний диаметр в мм Движение жидкостей в трубопроводах - student2.ru
При р- lam Прнр=3ат