Определение коэффициента восстановления
СКОРОСТИ И СИЛЫ УПРУГОСТИ ПРИ СОУДАРЕНИИ ШАРОВ
Цель работы: изучение упругого удара шаров, определение коэффициента восстановления скорости при упругом ударе, определение силы упругости.
Приборы и принадлежности: экспериментальная установка, набор металлических шаров, электронный блок.
Краткая теория
Ударом называется столкновение тел, при котором за малый промежуток времени происходит значительное изменение скоростей тел. Для классификации результата этого взаимодействия вводят понятия абсолютно неупругого и абсолютно упругого ударов.
Абсолютно неупругий удар – столкновение тел, в результате которого тела движутся как единое целое. Примерами абсолютно неупругого удара является столкновение метеорита с Землей, пули с песком, шаров из пластилина и др.
Абсолютно упругий удар – столкновение, при котором механическая энергия системы тел не изменяется. При абсолютно упругом ударе сохраняются импульс и кинетическая энергия сталкивающихся тел. Примерами абсолютно упругого удара являются столкновения бильярдных шаров, теннисного мяча с ракеткой и др.
Соударение тел характеризуется коэффициентом восстановления скорости, связанным с их упругими свойствами. При центральном ударе этот коэффициент равен
, (1)
где в числителе стоит относительная скорость тел после удара, в знаменателе - до удара.
При абсолютно неупругом ударе а при абсолютно упругом ударе Для реальных столкновений тел
Рассмотрим упругое соударение шаров в данной работе. Два шара одинаковой массы подвешены на нитях. Отклоним правый шар от положения равновесия на угол (рис. 1). Шар приобретет потенциальную энергию, которая при возвращении шара к положению равновесия перейдет в кинетическую:
откуда
Выразим высоту поднятия шара через и длину нити
тогда
При малых значениях угла и для получаем
(2)
Второй шар до столкновения покоится, т. е. .
Скорости шаров после удара и связаны с углами отклонения шаров после удара и такими же соотношениями, что и :
, (3)
Подставив в (1) и из (2) и (3), получим:
(4)
Зная время соударения, можно рассчитать среднюю силу упругости, действующую на шары при столкновении. На основании второго закона Ньютона для изменения импульса второго шара при ударе справедливо
(5)
где - сила упругости. Величина силы упругости зависит от времени. Для приближенного расчета заменим ее на постоянную величину - среднюю силу упругости Заменим в формуле (5) на время соударения а на - импульс второго шара после удара, тогда
(6)
Порядок выполнения работы
I. Определение коэффициента восстановления скорости
1. Ознакомиться с устройством установки.
2. Установить шары в положении равновесия так, чтобы их центры находились на одном уровне.
3. Отвести правый шар на угол и зафиксировать его с помощью электромагнита, нажав кнопку «Сброс».
4. Нажать кнопку "Пуск". После этого правый шар начнет двигаться вниз и столкнется с левым шаром.
5. При помощи шкал визуально определить углы отскока правого и левого шаров.
6. Нажать кнопку "Сброс". Отвести правый шар на этот же угол
7. Опыты проделать 5 раз при одном и том же угле отклонения Результаты занести в табл. 1.
8. Вычислить коэффициент восстановления скорости по формуле (4).
9. Рассчитать абсолютную и относительную погрешности определения по методике обработки результатов при косвенных воспроизводимых измерениях.
10. Записать конечный результат. Заполнить табл. 1.
Таблица 1
град. | град. | град. | град. | град. | град. | град. | % | |||
II. Определение времени соударения шаров и расчет средней
силы упругости
1. Отвести правый шар на угол и зафиксировать его с помощью электромагнита.
2. Нажать кнопку "Пуск". После этого правый шар начнет двигаться вниз и столкнется с левым шаром.
3. По таймеру блока определить время соударения шаров (первое появившееся на правом табло значение).
4. Нажать кнопку "Сброс".
5. Повторить пункты «1»-«4» пять раз. Результаты занести в табл. 2.
6. Пользуясь шкалой на вертикальной стойке установки, определить длину нити , значение записать в табл. 2.
7. Вычислить среднюю силу упругости по формуле (6). Значения и взять из табл. 1.
8. Рассчитать абсолютную и относительную погрешности определения по формулам расчета погрешности косвенных воспроизводимых измерений.
рад.; мм м; кг.
Таблица 2
< > | m | F | |||||||||||
мкс | мкс | мкс | град. | рад. | рад. | кг | кг | м | м | Н | Н | % | |
Масса латунного шара – 122 г.
Масса алюминиевого шара – 42 г.
Масса стального шара – 112 г.
Контрольные вопросы
1. Чем отличается абсолютно упругий удар от абсолютно неупругого? Приведите примеры.
2. Запишите законы сохранения импульса и энергии для абсолютно упругого и абсолютно неупругого ударов двух тел.
3. Почему в результате абсолютно неупругого удара шаров их суммарная кинетическая энергия уменьшается?
4. Коэффициент восстановление скорости и его определение в данной работе (вывод расчетной формулы).
5. Покоящийся шар приобретает скорость в результате центрального соударения с другим шаром. При каком ударе (упругом или неупругом) эта скорость будет больше? Почему?
6. Как рассчитать среднюю силу упругости в данной работе?
ЛАБОРАТОРНАЯ РАБОТА 21-6