Из генеральной совокупности.

В статистике применяются различные способы формирования выборочных совокупностей, что обусловливается задачами исследования и зависит от специфики объекта изучения.

Основным условием проведения выборочного обследования является предупреждение возникновения систематических ошибок, возникающих вследствие нарушения принципа равных возможностей попадания в выборку каждой единицы генеральной совокупности. Предупреждение систематических ошибок достигается в результате применения научно обоснованных способов формирования выборочной совокупности.

Существуют следующие способы отбора единиц из генеральной совокупности:

1) индивидуальный отбор — в выборку отбираются отдельные единицы;

2) групповой отбор — в выборку попадают качественно однородные группы или серии изучаемых единиц;

3) комбинированный отбор — это комбинация индивидуального и группового отбора.

Способы отбора определяются правилами формирования выборочной совокупности.

Выборка может быть:

— собственно-случайная;

— механическая;

— типическая;

— серийная;

— комбинированная.

Собственно-случайная выборка состоит в том, что выборочная совокупность образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки.

Доля выборки есть отношение числа единиц выборочной совокупности n к численности единиц генеральной совокупности N, т.е.

Из генеральной совокупности. - student2.ru .

Так, при 5%-ной выборке из партии товара в 2 000 ед. численность выборки n составляет 100 ед. (5*2000:100), а при 20%-ной выборке она составит 400 ед. (20*2000:100) и т.д.

Механическая выборка состоит в том, что отбор единиц в выборочную совокупность производится из генеральной совокупности, разбитой на равные интервалы (группы). При этом размер интервала в генеральной совокупности равен обратной величине доли выборки.

Так, при 2%-ной выборке отбирается каждая 50-я единица (1:0,02), при 5%-ной выборке — каждая 20-я единица (1:0,05) и т.д.

Таким образом, в соответствии с принятой долей отбора, генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица.

Важной особенностью механической выборки является то, что формирование выборочной совокупности можно осуществить, не прибегая к составлению списков. На практике часто используют тот порядок, в котором фактически размещаются единицы генеральной совокупности. Например, последовательность выхода готовых изделий с конвейера или поточной линии, порядок размещения единиц партии товара при хранении, транспортировке, реализации и т.д.

Типическая выборка.При типической выборке генеральная совокупность вначале расчленяется на однородные типические группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая выборка обычно применяется при изучении сложных статистических совокупностей. Например, при выборочном обследовании производительности труда работников торговли, состоящих из отдельных групп по квалификации.

Важной особенностью типической выборки является то, что она дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность.

Для определения средней ошибки типической выборки используются формулы:

повторный отбор

Из генеральной совокупности. - student2.ru , Из генеральной совокупности. - student2.ru

бесповторный отбор

Из генеральной совокупности. - student2.ru , Из генеральной совокупности. - student2.ru

Дисперсия определяется по следующим формулам:

Из генеральной совокупности. - student2.ru , Из генеральной совокупности. - student2.ru

Пример.

Для выявления доли простоев из-за несвоевременного поступления полуфабрикатов была проведена фотография рабочего дня 10% рабочих четырех различных цехов. Отбор рабочих внутри цехов производится методом механического отбора. В результате выборки были получены следующие данные:

Цех Число рабочих в выборке Удельный вес простоев из-за несвоевременного поступления полуфабрикатов, %
№1
№2
№3
№4

С вероятностью 0,954 требуется определить пределы, в которых находится доля простоев на заводе из-за несвоевременного поступления полуфабрикатов.

Рассчитаем долю простоев из-за несвоевременного поступления полуфабрикатов в выборке:

Из генеральной совокупности. - student2.ru

Рассчитаем дисперсии типических групп:

для группы Из генеральной совокупности. - student2.ru Из генеральной совокупности. - student2.ru

Средняя из внутригрупповых дисперсий определяется по формуле:

Из генеральной совокупности. - student2.ru

Определяем среднюю ошибку в выборочной доле:

Из генеральной совокупности. - student2.ru

Рассчитаем предельную ошибку выборки для доли с вероятностью 0,954:

Из генеральной совокупности. - student2.ru

С вероятностью 0,954 можно утверждать, что доля простоев рабочих из-за несвоевременного поступления полуфабрикатов находится в пределах Из генеральной совокупности. - student2.ru .

Серийная выборка. При серийной выборке генеральную совокупность делят на одинаковые по объему группы — серии. В выборочную совокупность отбираются серии. Внутри серий производится сплошное наблюдение единиц, попавших в серию.

При бесповторном отборе серий средняя ошибка выборочной серии определяется по формуле:

Из генеральной совокупности. - student2.ru ,

где Из генеральной совокупности. - student2.ru — межсерийная дисперсия средних;

R — число серий в генеральной совокупности;

r — число отобранных серий.

Пример.

В механическом цехе завода в десяти бригадах работает 100 рабочих. В целях изучения квалификации рабочих была произведена 20%-ная серийная бесповторная выборка, в которую вошли 2 бригады. Получено следующее распределение обследованных рабочих по разрядам:

Рабочие Разряды рабочих в бригаде 1 Разряды рабочих в бригаде 2

Необходимо определить с вероятностью 0,997 пределы, в которых находится средний разряд рабочих механического цеха.

Определим выборочные средние по бригадам и общую среднюю:

Из генеральной совокупности. - student2.ru

Из генеральной совокупности. - student2.ru

Из генеральной совокупности. - student2.ru

Определим межсерийную дисперсию:

Из генеральной совокупности. - student2.ru

Рассчитаем среднюю ошибку выборки:

Из генеральной совокупности. - student2.ru

Вычислим предельную ошибку выборки с вероятностью 0,997.

Из генеральной совокупности. - student2.ru

С вероятностью 0,997 можно утверждать, что средний разряд рабочих механического цеха находится в пределах Из генеральной совокупности. - student2.ru .

При бесповторном серийном отборе средняя ошибка выборки для доли определятся по формуле:

Из генеральной совокупности. - student2.ru ,

где Из генеральной совокупности. - student2.ru — межсерийная дисперсия доли.

Пример.

200 ящиков деталей упакованы по 40 шт. в каждом. Для проверки качества деталей был проведён сплошной контроль деталей в 20 ящиках (выборка бесповторная). В результате контроля установлено, что доля бракованных деталей составляет 15%. Межсерийная дисперсия равна 49. С вероятностью 0,997 определим пределы, в которых находится доля бракованной продукции в партии ящиков.

Определим среднюю ошибку выборки для доли:

Из генеральной совокупности. - student2.ru .

Предельная ошибка выборки для доли с вероятностью 0,997 равна: Из генеральной совокупности. - student2.ru .

С вероятностью 0,997 можно утверждать, что доля бракованных деталей в партии будет находиться в пределах от 10,59% до 19,41%.

В статистике различают одноступенчатые и многоступенчатые способы отбора единиц в выборочную совокупность.

При одноступенчатой выборке каждая отобранная единица сразу же подвергается изучению по заданному признаку. Так обстоит дело при собственно-случайной и серийной выборке.

При многоступенчатой выборке производят подбор из генеральной совокупности отдельных групп, а из групп выбираются отдельные единицы. Так производится типическая выборка с механическим способом отбора единиц в выборочную совокупность.

Комбинированная выборка может быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Затем производят отбор групп, а внутри последних осуществляется отбор отдельных единиц.

Наши рекомендации