Принципы и способы повышения работоспособности.
Принцип заключается в тренировке различных физиологических и функциональных систем. Результатом является повышение выносливости организма.
Тренировка транспортного и метаболического обеспечения функций повышает общую физическую тренированность.
Способы. Для тренировки можно использовать ходьбу, бег, физические упражнения. Нагрузки должны быть тренирующими, т. е. оптимальными. Максимальные нагрузки являются стрессовыми.
Правила тренировок:
1) нагрузке подвергаются более 1/3 мышц тела;
2) необходимо дозировать нагрузки по интенсивности и продолжительности;
3) величина нагрузок должна возрастать.
Оптимально выбранный режим тренировок обеспечивает:
1) экономизацию функций даже в покое (↓ ЧСС, ЧД, МОК, АД);
2) улучшаются интегральные показатели организма: аппетит, сон, настроение;
3) возникает «перекрестный» эффект адаптации, т. е. активизируются иммунные реакции, повышается устойчивость к колебаниям температуры, умственная работоспособность.
Определение физической работоспособности:
1) по минутному потреблению кислорода (определяет аэробную работоспособность), дает представление о внутреннем дыхании и дает представление о работе дыхательной, ССС, тканевом дыхании. Показатель позволяет оценить транспортное и метаболическое обеспечение функций.
2) по количеству труда за определенное время;
3) по показателям физиологических систем при выполнении трудовой операции.
Принципы оценки умственной работоспособности.Такая оценка включает:
1) определение объема кратковременной памяти;
2) определение устойчивости внимания;
3) определение продуктивности умственного труда;
4) особенности мышления.
Как правило работоспособность колеблется в течении дня, недели, месяца, года и эти колебания близки к синусоидальным.Совокупность напряжения физиологических систем при выполнении работы составляет ее физиологическую стоимость.
Вопрос2В процессе коагуляционного гемостаза свертывание крови протекает в три последовательные фазы. Наиболее сложная I фаза - образование про-тромбиназ.
I фаза - образование протромбиназ
Различают 4 вида протромбиназ: тканевую, эритроцитарную, тромбо-цитарную и лейкоцитарную. Причем 3 последние объединены в кровяную протромбиназу .Тканевая протромбиназа образуется очень быстро за 5-10 секунд.
При повреждении тканей в месте раны в кровь попадают тканевые тромбопластины. На обнаженных торцах фосфолипидных мембран адсорбируется VII, который взаимодействует с Са2+ и активируется) Комплекс факторов VII+IV на фосфолипидах активирует фактор X Кроме того на фосфолипидах адсорбируется фактор V. Это приводит к образованию комплекса Xa+V+Ca2+, в котором активируется фактор V. Этот комплекс энзиматически действует на протромбин, превращая его в тромбин. Поэтому он называется протромбиназным комплексому Он и завершает- образование тканевой про-тромбиназы.
II фаза - образование тромбина (тромбинообразование)
Тромбин образуется из протромбина плазмы. Этот процесс протекает мгновенно за 2-5 с.
Большая скорость этой реакции связана с тем, что она происходит на матрице протромбиназ, адсорбирующих протромбин, который под их влиянием превращается в три молекулы тромбина. Этим завершается 2 фаза -тромбинообразования.
III фаза - превращение фибриногена в фибрин
Эта фаза протекает в 3 этапа. На первом этапе фибриноген под влия-^ нием тромбина расщепляется на фибрин-мономер и на 2 молекулы фиб-ринопептидов А и В.
На втором этапе происходит полимеризация фибрин-мономера. Этот процесс протекает при участии ионов Са2+, т.е. он не является ферментативным процессом. В результате образуется фибрин-полимер, в котором молекулы фибрин-мономера связаны непрочными водородными связями. Это гель. Однако он отличается плохими механическими свойствами и быстро растворяется плазмином и трипсином. Отсюда он и получил свое название -фибрин "S" (soluble), растворимый фибрин.
Первичные антикоагулянты синтезируются в организме как самостоятельные обособленные вещества и постоянно с определенной скоростью поступают в кровоток. Там они взаимодействуют с активными факторами коагуляции и нейтрализуют их. Первичные антикоагулянты не действуют на неактивные формы факторов свертывания крови /проферменты, прокоагу-лянты/. К первичным антикоагулянтам относятся: антитромбин III, гепарин, альфа2-макроглобулин, контактный ингибитор, ингибитор комплемента-1, антикефалин (липидный ингибитор Токантиса), антипротромбиназы и др.
Вопрос№3
. Возбудимость— это способность клеток генерировать потенциал действия (ПД).
1. Параметры потенциала покоя и ПД.
Потенциал покоя клеток рабочего миокарда формируется в основном градиентом К+, его величина в среднем составляет 85—90 мВ. Величина ПД составляет 120 мВ. Длительность ПД кардиомиоцитов желудочков (300— 400 мс) почти соответствует длительности сокращения мышцы сердца. У кардиомиоцитов предсердия продолжительность ПД составляет 100 мс, почти столько же длится систола предсердий. Длительность ПД кардиомиоци-та значительно уменьшается, если очередной импульс приходит раньше — сразу после окончания рефрактерной фазы. Этот феномен можно наблюдать в эксперименте при укорочении интервалов между отдельными раздражениями сердечной мышцы. Механизм уменьшения продолжительности ПД в описанном опыте (рис. 13.3) связан с ускорением процесса реполяризации в цикле возбуждения, что объясняется еще сохраняющейся повышенной проницаемостью мембраны для калия.
2. Ионный механизм возникновения ПД кардиомиоцитов. Фазы деполяризации и инверсии (вся восходящая часть ПД) осуществляется в основном за счет входа Na+ в клетку, как у миоцитов скелетной мышцы. В данный период увеличена проницаемость быстрых Na-каналов, когда снижение мембранного потенциала достигает —60 мВ, Na+лавиной поступает в клетку. При дальнейшей деполяризации до —40 мВ активируются медленные электрочувствительные Na/Ca-кана-лы, по которым дополнительно Na+ и в большей степени Са2+ начинают входить в клетку. В фазе деполяризации Na+ и Са2+ по быстрым и медленным каналам идут в клетку согласно концентрационному и электрическому градиентам (клетка в эту фазу внутри еще имеет отрицательный заряд). В фазе инверсии оба иона входят в клетку только согласно концентрационному градиенту и вопреки электрическому — в этот период клетка перезаряжается: внутри нее возникает положительный заряд, снаружи — отрицательный.
Далее нарастание ПД прекращается вследствие инактивации быстрых Na-каналов, несмотря на то, что ток Na+ и Са2+ внутрь клетки по медленным каналам продолжается. Начинается спад ПД в результате активации К-каналов и выхода К+ из клетки. Вначале снижение ПД происходит быстро, очевидно, вследствие входа СГ в клетку согласно концентрационному и электрическому градиентам (отрицательно заряженных ионов хлора, как известно, больше вне клетки, которая во время инверсии внутри заряжена положительно относительно наружной поверхности). В кардиомиоцитах обнаружены хлорные потенциалчувствительные каналы. Затем, в фазе инверсии, медленный суммарный вход Na+ и Са2+ в клетку примерно равен медленному току К+ из клетки, что обеспечивает возникновение плато ПД. Медленный спад (плато) свидетельствует о том, что выход К+ из клетки несколько превышает вход Na+ и Са2+ в клетку вследствие начинающейся инактивации медленных Na/Ca-каналов. Полная инактивация этих каналов заканчивается при мембранном потенциале 0 — (+10) мВ, т.е. сразу после фазы инверсии или в начале фазы реполяризации. К этому моменту активация К-каналов быстро нарастает, и К+ начинает лавиной выходить из клетки, что обеспечивает фазу реполяризации кардиомиоцита. Мембранный потенциал возвращается к исходной величине 85— 90 мВ. В фазе инверсии К+ выходит из клетки согласно концентрационному и электрическому градиентам, в фазе реполяризации — согласно концентрационному, но вопреки электрическому: в этой фазе клетка снаружи уже снова заряжена положительно (рис. 13.4).