Принципы и способы повышения работоспособности.

Принцип заключается в тренировке различных физиологических и функциональных систем. Результатом является повышение выносливости организма.

Тренировка транспортного и метаболического обеспечения функций повышает общую физическую тренированность.

Способы. Для тренировки можно использовать ходьбу, бег, физические упражнения. Нагрузки должны быть тренирующими, т. е. оптимальными. Максимальные нагрузки являются стрессовыми.

Правила тренировок:

1) нагрузке подвергаются более 1/3 мышц тела;

2) необходимо дозировать нагрузки по интенсивности и продолжительности;

3) величина нагрузок должна возрастать.

Оптимально выбранный режим тренировок обеспечивает:

1) экономизацию функций даже в покое (↓ ЧСС, ЧД, МОК, АД);

2) улучшаются интегральные показатели организма: аппетит, сон, настроение;

3) возникает «перекрестный» эффект адаптации, т. е. активизируются иммунные реакции, повышается устойчивость к колебаниям температуры, умственная работоспособность.

Определение физической работоспособности:

1) по минутному потреблению кислорода (определяет аэробную работоспособность), дает представление о внутреннем дыхании и дает представление о работе дыхательной, ССС, тканевом дыхании. Показатель позволяет оценить транспортное и метаболическое обеспечение функций.

2) по количеству труда за определенное время;

3) по показателям физиологических систем при выполнении трудовой операции.

Принципы оценки умственной работоспособности.Такая оценка включает:

1) определение объема кратковременной памяти;

2) определение устойчивости внимания;

3) определение продуктивности умственного труда;

4) особенности мышления.

Как правило работоспособность колеблется в течении дня, недели, месяца, года и эти колебания близки к синусоидальным.Совокупность напряжения физиологических систем при выполнении работы составляет ее физиологическую стоимость.

Вопрос2В процессе коагуляционного гемостаза свертывание крови протекает в три последовательные фазы. Наиболее сложная I фаза - образование про-тромбиназ.

I фаза - образование протромбиназ

Различают 4 вида протромбиназ: тканевую, эритроцитарную, тромбо-цитарную и лейкоцитарную. Причем 3 последние объединены в кровяную протромбиназу .Тканевая протромбиназа образуется очень быстро за 5-10 се­кунд.

При повреждении тканей в месте раны в кровь попадают тканевые тромбопластины. На обнаженных торцах фосфолипидных мембран адсорби­руется VII, который взаимодействует с Са2+ и активируется) Комплекс факто­ров VII+IV на фосфолипидах активирует фактор X Кроме того на фосфолипидах адсорбируется фактор V. Это приводит к образованию комплекса Xa+V+Ca2+, в котором активируется фактор V. Этот комплекс энзиматически действует на протромбин, превращая его в тромбин. Поэтому он называется протромбиназным комплексому Он и завершает- образование тканевой про-тромбиназы.

II фаза - образование тромбина (тромбинообразование)

Тромбин образуется из протромбина плазмы. Этот процесс протекает мгновенно за 2-5 с.

Большая скорость этой реакции связана с тем, что она происходит на матрице протромбиназ, адсорбирующих протромбин, который под их влия­нием превращается в три молекулы тромбина. Этим завершается 2 фаза -тромбинообразования.

III фаза - превращение фибриногена в фибрин

Эта фаза протекает в 3 этапа. На первом этапе фибриноген под влия-^ нием тромбина расщепляется на фибрин-мономер и на 2 молекулы фиб-ринопептидов А и В.

На втором этапе происходит полимеризация фибрин-мономера. Этот процесс протекает при участии ионов Са2+, т.е. он не является ферментатив­ным процессом. В результате образуется фибрин-полимер, в котором моле­кулы фибрин-мономера связаны непрочными водородными связями. Это гель. Однако он отличается плохими механическими свойствами и быстро растворяется плазмином и трипсином. Отсюда он и получил свое название -фибрин "S" (soluble), растворимый фибрин.

Первичные антикоагулянты синтезируются в организме как само­стоятельные обособленные вещества и постоянно с определенной скоростью поступают в кровоток. Там они взаимодействуют с активными факторами коагуляции и нейтрализуют их. Первичные антикоагулянты не действуют на неактивные формы факторов свертывания крови /проферменты, прокоагу-лянты/. К первичным антикоагулянтам относятся: антитромбин III, гепарин, альфа2-макроглобулин, контактный ингибитор, ингибитор комплемента-1, антикефалин (липидный ингибитор Токантиса), антипротромбиназы и др.

Вопрос№3

. Возбудимость— это способность клеток генерировать потенциал действия (ПД).

1. Параметры потенциала покоя и ПД.

Потенциал покоя клеток рабочего миокарда формируется в основном градиентом К+, его величина в среднем составляет 85—90 мВ. Величина ПД составляет 120 мВ. Длитель­ность ПД кардиомиоцитов желудочков (300— 400 мс) почти соответствует длительности со­кращения мышцы сердца. У кардиомиоцитов предсердия продолжительность ПД составля­ет 100 мс, почти столько же длится систола предсердий. Длительность ПД кардиомиоци-та значительно уменьшается, если очередной импульс приходит раньше — сразу после окончания рефрактерной фазы. Этот фено­мен можно наблюдать в эксперименте при укорочении интервалов между отдельными раздражениями сердечной мышцы. Меха­низм уменьшения продолжительности ПД в описанном опыте (рис. 13.3) связан с ускоре­нием процесса реполяризации в цикле воз­буждения, что объясняется еще сохраняю­щейся повышенной проницаемостью мем­браны для калия.

2. Ионный механизм возникновения ПД кардиомиоцитов. Фазы деполяризации и ин­версии (вся восходящая часть ПД) осущест­вляется в основном за счет входа Na+ в клет­ку, как у миоцитов скелетной мышцы. В дан­ный период увеличена проницаемость бы­стрых Na-каналов, когда снижение мембран­ного потенциала достигает —60 мВ, Na+лави­ной поступает в клетку. При дальнейшей де­поляризации до —40 мВ активируются мед­ленные электрочувствительные Na/Ca-кана-лы, по которым дополнительно Na+ и в боль­шей степени Са2+ начинают входить в клетку. В фазе деполяризации Na+ и Са2+ по бы­стрым и медленным каналам идут в клетку согласно концентрационному и электричес­кому градиентам (клетка в эту фазу внутри еще имеет отрицательный заряд). В фазе ин­версии оба иона входят в клетку только со­гласно концентрационному градиенту и во­преки электрическому — в этот период клет­ка перезаряжается: внутри нее возникает по­ложительный заряд, снаружи — отрицатель­ный.

Далее нарастание ПД прекращается вслед­ствие инактивации быстрых Na-каналов, не­смотря на то, что ток Na+ и Са2+ внутрь клет­ки по медленным каналам продолжается. На­чинается спад ПД в результате активации К-каналов и выхода К+ из клетки. Вначале снижение ПД происходит быстро, очевидно, вследствие входа СГ в клетку согласно кон­центрационному и электрическому градиен­там (отрицательно заряженных ионов хлора, как известно, больше вне клетки, которая во время инверсии внутри заряжена положи­тельно относительно наружной поверхнос­ти). В кардиомиоцитах обнаружены хлорные потенциалчувствительные каналы. Затем, в фазе инверсии, медленный суммарный вход Na+ и Са2+ в клетку примерно равен медлен­ному току К+ из клетки, что обеспечивает возникновение плато ПД. Медленный спад (плато) свидетельствует о том, что выход К+ из клетки несколько превышает вход Na+ и Са2+ в клетку вследствие начинающейся инактивации медленных Na/Ca-каналов. Полная инактивация этих каналов заканчи­вается при мембранном потенциале 0 — (+10) мВ, т.е. сразу после фазы инверсии или в начале фазы реполяризации. К этому мо­менту активация К-каналов быстро нараста­ет, и К+ начинает лавиной выходить из клет­ки, что обеспечивает фазу реполяризации кардиомиоцита. Мембранный потенциал возвращается к исходной величине 85— 90 мВ. В фазе инверсии К+ выходит из клет­ки согласно концентрационному и электри­ческому градиентам, в фазе реполяризации — согласно концентрационному, но вопреки электрическому: в этой фазе клетка снаружи уже снова заряжена положительно (рис. 13.4).

Наши рекомендации