ТЕМА 4. бактериологический метод: изучение биохимических свойств бактерий (окончание). действие внешних факторов на микроорганизмы. антибиотики

Микроорганизмы, находящиеся во внешней среде, подвергаются воздействию разнообразных физических, химические и биологических факторов. Каждый вид имеет свои, наследственные закрепленные зоны влияния отдельных факторов. Среди физических – особое значение в жизни микробов имеет температура. В зависимости от температурных параметров выделяют три группы микроорганизмов – термофилы, психрофилы и мезофиллы. Для термофилов зона оптимального роста равна 50 – 600С, верхняя зона задержки роста – 750С, нижняя – 450С. Психрофилы имеют зону оптимального роста в пределах 10 – 150С, максимальную зону задержки роста 25 – 300С, минимальную 0 – 50С. Некоторые виды холодолюбивых бактерий, размножаясь в пищевых продуктах при температуре бытового холодильника, вызывают заболевания у человека. Патогенные бактерии и большинство микробов – сапрофитов являются мезофиллами. Оптимальная температура их роста колеблется в пределах 30 – 370С, максимальная 43 – 450С, минимальная 15 – 200С.

Губительное действие на микроорганизмы оказывают высушивание, , ионизирующая радиация, УФ – лучи, ультразвук, и также химические вещества, обладающие противомикробным действием (галогены, окислители, кислоты, щелочи, соли тяжелых металлов и т. д.).

Микробные ассоциации зависят от факторов внешней среды, но и от сложных взаимоотношений микроорганизмов, которые могут носить характер симбиоза или антагонизма. Антагонистические свойства микробов могут быть обусловлены разными механизмами. Один из них – образование антибиотических веществ. Среди микроорганизмов продуцентами антибиотиков являются актиномицеты, грибы и бактерии.

Антибиотики – химиотерапевтические вещества биологического, полусинтетического или синтетического происхождения, которые в малых концентрациях вызывают торможение размножения или гибель чувствительных к ним микробов и опухолевых клеток во внутренней среде животного организма.

По направленности действия все антибиотики делят на следующие группы: противобактериальные, противовирусные, противогрибковые, противопротозойные, противоопухолевые. Они могут обладать узким (например, бензилпенициллин), умеренным (например, ампициллин) или широким (например, аминогликозиды, тетрациклины) спектром действия.

По химическому составу антибиотики подразделяют на несколько групп:

1. Бета – лактамные антибиотики, включающие природные пенициллины, несколько поколений полусинтетических пенициллинов, несколько поколений цефалоспоринов, нетрадиционные бета – лактамы.

2. Стрептомицины и стрептомициноподобные антибиотики.

3. Макролиды – эритромицин, олеандомицин, карбомицин.

4. Аминогликозиды – гентамицин, неомицин, канамицин.

5. Тетрациклин и его полусинтетические производные.

6. Гликопептиды – ристомицин, линкомицин, ванкомицин.

7. Левомицетин – синтетическое вещество, идентичное природному антибиотику, хлорамфениколу.

8. Производные параамино – салициловой кислоты (препараты ПАСК -противотуберкулёзные антибиотики), изокотиновой кислоты, а также рифампицины и др.

9. Фосфомицины – антибиотики из группы фосфоновой кислоты.

10. Фторхинолоны – неприродные соединения (ципрофлоксацин, ципробан и др.).

11. Полиеновые антибиотики – нистатин, леворин, амфотерицин В.

По механизму антимикробного действия антибиотики отличаются друг от друга. Мишенью для их ингибирующего действия служит одна или несколько биохимических реакций, необходимых для синтеза и функционирования определенных структур микробной клетки (табл. 2).

Таблица 2

Механизмы ингибирующего действия некоторых групп антибиотиков на микробную клетку

Антибиотики Мишени действия антибиотиков
Пенициллины, цефалоспорины, циклосерин, фосфомицин, ристомицин Ингибирование синтеза клеточной стенки
Полиеновые антибиотики, полимиксины Нарушение функций цитоплазматической мембраны
Аминогликозиды, тетрациклины, левомицетин, макролиды Ингибирование синтеза белков на рибосомах
Рифампицины, актиномицеты, оливомицин, антрациклины Ингибирование ДНК – зависимой РНК – полимеразы
Эритромицин   Блокирует реакцию транслокации
Фторхинолоны Ингибирование ДНК – гиразы или специфических участков ДНК, созданных ДНК – гиразой

ЗАДАНИЕ

1. Просмотреть посевы на средах «пёстрого ряда» и в мясо – пептоном бульоне. Зарегистрировать результаты. Образование индола, сероводорода, аммиака обозначается «+», отсутствие – « – ». Ферментация углевода с образованием кислоты (изменение окраски среды) отмечается «К», с образованием кислоты и газа (наличие пузырьков в столбике среды) – «КГ», отсутствие ферментации углеводов – « – ».

2. Поставить реакции Фогес – Проскауэра и с метилрот, для чего посев на среде Кларка разделить на две части. К первой добавить 2 – 3 капли 0,04 % раствора метилрот: в случае положительной реакции появляется красное окрашивание, при отрицательной – жёлтое. Констант второй части среды добавить равный объем 10 % раствора КОН и поставить в термостат при температуре 370С: окраска появляется постепенно в случае положительной реакции Фогес – Проскауэра наблюдается розовое окрашивание, в отрицательных случаях окраска не меняется.

3. Заполнить протокол исследования чистой культуры бактерий (табл. 3).

4. Испытать действие света на бактерии (опыт Бухнера). На поверхность агара в чашке Петри налить 1 мл бульонной культуры, равномерно распределить по поверхности, остаток удалить пипеткой. Кружочки стерильной бумаги поместить на поверхность агара и осветить открытую чашку прямыми солнечными лучами в течение 1 – 2 часов, после чего чашку закрыть крышкой и поставить в термостат.

Таблица 3

Наши рекомендации