Методы изучения наследственной патологии.
Выделяютгенетико-эпидемиологического подход в изучении наследственных болезней (генетический, близнецовый и популяционностатистические методы), методы клинической диагностики (клиническое обследование и параклинические исследования), лабораторные методы диагностики (цитогенетические, биохимические, молекулярно-генетические) и методы моделирования наследственных болезней в эксперименте на животных.
Генетико-эпидемиологический подходв изучении роли наследственности в этиологии и патогенезе болезней человека предполагает совместное применение генеалогического, близнецового и популяционно-статистических методов.
Генеалогический метод- метод родословных, т.е. прослеживание болезни (или признака) в семье или роду с указанием типа родословных связей между членами родословной. В случае доказательства наследственного характера болезни возможно установление типа наследования (аутосомно-доминантный, аутосомнорецессивный, Х-сцепленный, Y-сцепленный, митохондриальный). Анализ родословных является обязательным условием успешного решения задач картирования генов на хромосомах, расшифровки механизмов взаимодействия генов, изучения интенсивности мутационного процесса. В клинической практике генеалогический анализ составляет основу осуществления медикогенетического консультирования. |
Близнецовый метод. Возможности его использования при изучении наследственной патологии определяются представлениями о происхождении близнецов: партнеры однозиготной (монозиготной) пары близнецов являются генетически тождественными, поскольку образуются из одной зиготы; партнеры двузиготной(дизиготной) пары близнецов образуются из двух разных зигот, а потому их фенотипическое сходство не больше, чем у братьев и сестер, родившихся в разное время; пары разнополых близнецов всегда являются двузиготными; внутрипарное различие, обнаруживаемое по какой-либо нормальной или патологической особенности однозиготных близнецов, должно быть отнесено за счет различий, обусловленных факторами среды.
Близнецовый метод считается особенно эффективным для доказательства наследственной предрасположенности к конкретным заболеваниям (мультифакториальные болезни и комплексные признаки). В этом случае применяют два варианта сравнения: сравнение конкордантности (совпадения фенотипов) моно- и дизиготных близнецов; сравнениеконкордантности вместе и порознь выросших монозиготных близнецов.
Популяционно-статистические методы. В отношении моногенных (менделевских) болезней эти методы в сравнительных исследованиях различных групп населения (популяций, этносов) позволяют выявить и оценить наиболее важные факторы популяционной динамики (отбор, дрейф генов, инбридинг, давление мутаций), определяющие пространственную изменчивость (территориальную гетерогенность в распространенности) наследственных болезней. Например, показано, что накопление некоторых рецессивных болезней среди финноязычного населения Финляндии обусловлено длительной изоляцией субпопуляций и дрейфом генов. Накопление редких патологических мутаций среди евреевашкенази объясняется эффектом «родоначальника» и дрейфом генов. Для популяций Средней Азии, а также некоторых арабских популяций показано, что главным фактором, детерминирующим груз и структуру наследственных болезней, накопление аутосомнорецессивной патологии, являются неслучайные родственные браки (ассортативность браков).
Для других форм патологии - мультифакториальных заболеваний популяционно-статистические методы, наряду с использованием современных молекулярно-генетических методов, позволяют на основе анализа ассоциаций и сцепления генетических маркеров с конкретными признаками и болезнями в сравниваемых группах «больные - здоровые» («случай - контроль») в популяции, «больные - здоровые» в ядерных семьях, принадлежащих данной популяции, осуществлять поиск «генов-кандидатов» исследуемой болезни.
Методы клинической диагностики.Наследственная патология имеет некоторые специфические характеристики. Для их выявления используется весь арсенал методов клинической диагностики (анамнез, осмотр, физические методы и пр.), параклинические исследования (общеклиническая диагностика с использованием современной аппаратуры исследования отдельных органов и систем - R-логические, ультразвуковые, томографические и т.д.). Главный смысл их применения (и выбор оптимальных клинических приемов) - обнаружить специфические черты болезни, указывающие на наследственный характер поражения. К ним относятся: семейный характер заболевания; хроническое, прогредиентное, рецидивирующее течение; врожденный характер заболевания; «резистентность» к наиболее распространенным методам терапии; наличие патогномоничных признаков (или их сочетаний), свойственных только данной форме наследственной патологии. Именно последнее, обусловленное тем, что большинство мутантных генов, вызывающих наследственные болезни, обладает плейотропным эффектом и вовлечением в процесс многих органов и систем (неспецифичных ассоциаций), определяет необходимость применения параклинических методов исследования. Так, при таких наследственных болезнях соединительной ткани, как синдром Элерса-Данлоса, Марфана, для которых характерно нарушение сосудистой стенки (особенно аорты), подвывих хрусталика, пролапс митрального клапана, патология суставов, понадобятся R-логические, ультразвуковые, офтальмоскопические и некоторые другие параклинические методы исследования. Однако окончательная диагностика и выявление более тонких генетических вариантов исследованной патологии осуществляются с применением специальных лабораторных методов диагностики.
Лабораторные методы диагностики.Лабораторная диагностика наследственных болезней (фено- или генотипирование индивидов) в основе своей может быть направлена на идентификацию одной из трех «ступеней» болезни. Во-первых, это выявление этиологической причины наследственной патологии, или характеристика генотипа, т.е. определение конкретной мутации у индивида (генной, хромосомной, геномной). Эти цели достигаются с помощью цитогенетических или молекулярно-генетических методов. Во-вторых, лабораторные методы позволяют регистрировать первичный продукт гена (биохимические, иммунологические методы). В-третьих, возможна регистрация специфических метаболитов измененного обмена, возникших в процессе реализации патологического действия мутации (биохимические, иммунологические, цитологические методы регистрации на уровне жидкостей - кровь, моча, секрет - или клеток).
Цитогенетические методы. Они предназначены для изучения структуры хромосомного набора или отдельных хромосом. Объектом цитогенетических наблюдений могут быть делящиеся соматические, мейотические и интерфазные клетки. Чаще исследования выполняются на соматических клетках: наиболее удобный объект - культура лимфоцитов периферической крови, но также и культура клеток из кусочков кожи (фибробласты), костного мозга, эмбриональных тканей, хориона, клеток амниотической жидкости.
Специальным образом полученные препараты из культуры клеток затем окрашиваются.
Простая окраска (метод окраски по Гимзе или в русскоязычной литературе - «рутинная окраска») используется для ориентировочного определения числовых аномалий кариотипа. Структурные хромосомные аномалии (делеции, транслокации, инверсии), выявленные при простой окраске, должны быть идентифицированы с помощью дифференциальной окраски.
Благодаря успехам в молекулярной генетике человека разработан принципиально новый метод изучения хромосом - метод флюоресцентной гибридизации insitu (FISH). Он основан на использовании однонитевого специфического участка ДНК («зонда»), специальным образом «помеченного» и способного, после присоединения к участку анализируемой хромосомы, присоединить флюоресцентные красители (красный, зеленый и другие цвета). С помощью люминесцентного микроскопа окрашенные хромосомы визуализируются на фоне неокрашенных. Метод позволяет расшифровать сложные хромосомные перестройки, а также локализовать ген.
Биохимические методы. Эти методы: направлены на выявление биохимического фенотипа организма - от первичного продукта гена (полипептидной цепи) до конечных метаболитов в моче или поте. Поэтому существует огромное разнообразие методов. Но для целей диагностики наследственных болезней оправданными являются две биохимические стратегии, которые позволяют определить дальнейший ход обследования и выбор соответствующих биохимических методов и тестов: массовые и селективные программы первичной биохимической диагностики наследственных болезней.
Массовые просеивающие программы применяются в диагностике фенилкетонурии, врожденного гипотиреоза, адреногенитального синдрома, врожденных аномалий нервной трубки и болезни Дауна. Селективные диагностические программы предусматривают проверку, уточнение биохимических аномалий обмена для пациентов, у которых подозреваются генные болезни, с использованием простых качественных реакций или более точных методов (тонкослойная хроматография мочи и крови, газовая хроматография, флюорометрические методики и др.).
Молекулярно-генетические методы. Это большая и разнообразная группа методов, предназначенных для выявления вариаций в структуре исследуемого участка ДНК (аллеля, гена, региона хромосомы) вплоть до расшифровки первичной последовательности нуклеотидных оснований. Все разнообразие подходов для идентификации генов или определенных фрагментов ДНК и их вариаций основывается на двух основных методических разработках - технологии блот-гибридизации (от англ. blot- промокать) и амплификации отдельных участков ДНК.В основу методики амплификации положена полимеразная цепная реакция (ПЦР), которая позволяет в течение нескольких часов выделить и размножить определенный фрагмент ДНК в количестве, превышающем исходное в 109 раз. Такая высокая степень направленного обогащения значительно упрощает работу с минимальными количествами ДНК-образцов. Реакция высокоспецифична и чувствительна, позволяет исследовать единичную копию гена в исходном материале.
Методы моделирования.Для изучения многих моногенных болезней человека используются животные, несущие мутации в гомологичных генах. Они являются удобными моделями для исследования молекулярных основ патогенеза и отработки оптимальных вариантов лечения. С этой целью во многих питомниках мира созданы и поддерживаются коллекции генетических линий животных(мышей, крыс, кроликов, собак и др.). Мировая коллекция мышей насчитывает несколько сотен линий с моногенно наследуемыми дефектами.
Для анализа экспрессии мутантных генов invivo и оценки биологических свойств первичного генного продукта удобными оказались трансгенные животные.Трансгенных животных получают искусственным введением (трансгеноз) генетического материала (фрагмент гена или иная последовательность ДНК) в оплодотворенную яйцеклетку или в ранние зародыши млекопитающих. Дальнейшее развитие технологий трансгеноза позволило подойти к конструированию модельных генетических линий животных- направленному получению генетических моделей наследственных болезней путем введения сайтспецифических модификаций в геном млекопитающих, или «выбиванию» (вырезанию) определенного гена, идентичного гену человека. Такие мыши, у которых экспериментально «вырезан» определенный ген из генома, называются нокаутными (от англ. knockout). На этих животных можно приближенно понять патогенез наследственной болезни и апробировать методы лечения.
Математическое моделирование применяют в тех случаях, когда сформулированные задачи не могут быть решены только путем анализа экспериментального материала или их решение математически оказывается более быстрым и точным, чем экспериментально. В области генетики популяций математическое моделирование позволяет, например, оценить удельный вес многочисленных факторов популяционной динамики (отбор, мутации, дрейф генов, инбридинг, миграции) в формировании «груза» наследственной патологии. Изучение таких сложных процессов, как взаимодействие наследственных факторов и факторов среды в развитии признака, закономерностей функционирования генома человека как интегративной системы, взаимодействие генов («генные сети») при формировании физиологических свойств организма, становится предметом исследования биоинформатики (компьютерной геномики).