Тема 5. Основы жизнедеятельности
Обмен веществ и энергии составляет основу жизнедеятельности и принадлежит к числу важнейших специфических признаков живой материи. В процессе обмена питательные вещества превращаются в собственные компоненты тканей и конечные продукты метаболизма. При этих превращениях поглощается и высвобождается энергия. Использование химической энергии в организме называют энергетическим обменом.
Химическая работа обеспечивает обмен белков, жиров и углеводов, рост и размножение клеток, синтез и передачу наследственной информации. Осмотическая работа способствует трансмембранному переносу веществ (натрия, калия, хлора, кальция и др.); накоплению в клетке и выведению продуктов метаболизма; поддержанию постоянства состава клеточной и тканевой жидкости.
Электрическая работа поддерживает разность потенциалов между наружной и внутренней поверхностями мембраны, вследствие чего клетка реагирует на воздействия внешней и внутренней среды процессом возбуждения, одним из проявлений которого является трансмембранный электрический ток (потенциал действия).
Механическая работа определяет разные формы движения — от потоков цитоплазмы в клетке и трепетания ресничек эпителия в кишечнике, до согласованного сокращения различных групп мышц в сложных двигательных актах.
Условно в процессе обмена веществ можно выделить три этапа.
Первый этап — ферментативное расщепление питательных веществ и всасывание их в кровь, лимфу.
Второй этап — транспорт питательных веществ жидкими средами организма к тканям и клеточный метаболизм.
Третий этап — выведение конечных продуктов.
Промежуточный обмен — совокупность химических превращений переваренных питательных веществ с момента поступления их в кровь до начала выделения конечных продуктов из организма.
Промежуточный обмен состоит: из катаболизма и анаболизма.
Катаболизм — ферментативное расщепление в процессе окислительных реакций крупных органических молекул на более простые, в результате чего выделяется заключенная в них энергия. Часть этой энергии накапливается в виде АТФ и используется для выполнения биологически полезных форм работы (например, мышечного сокращения).
Анаболизм — ферментативный синтез из простых органических молекул крупномолекулярных клеточных компонентов — полисахаридов, нуклеиновых кислот, белков, липидов. Анаболические реакции протекают с использованием энергии и обеспечивают обновление, рост и регенерацию тканей.
Минеральный обмен
Процессы всасывания, усвоения, распределения, превращения и выделения из организма неорганических соединений составляют в совокупности минеральный обмен.
Обмен углеводов
Биологическая роль углеводов для человека определяется, прежде всего, его энергетической ценностью. Процессы превращения углеводов обеспечивают 60% суммарного энергообмена.
Обмен жиров
Суммарное количество жиров в организме человека составляет 10—20% массы тела.
Суточная потребность 70—80 г. Жиры, поступившие в пищеварительный тракт, распадаются на глицерин и жирные кислоты, которые всасываются в лимфатические сосуды, а оттуда поступают в кровь. В процессе окисления жирные кислоты превращаются в ацетилкоэнзим А, при помощи которого осуществляется связь углеводного и жирового обменов. Уровень жирных кислот в организме регулируется как отложением их в жировой ткани, так и высвобождением из нее.
Нейтральные жиры пищи являются важнейшим источником энергии. При окислении 1 г вещества выделяется максимальное по сравнению с окислением белков и углеводов количество энергии — 9,0 ккал. За счет окисления нейтральных жиров образуется 50% всей энергии в организме. Жиры, депонированные в подкожной клетчатке, предохраняют организм от потерь тепла, а окружающие внутренние органы — от механических повреждений. Увеличение массы тела на 20—25% против нормы считается предельно допустимой физиологической границей.
Фосфо - и гликолипиды входят в состав всех клеток, особенно нервных. Фосфолипиды синтезируются в печени и в кишечной стенке.
Бурый жир представлен особой жировой тканью, располагающейся в области шеи и верхней части спины у новорожденных и грудных детей. В небольшом количестве бурый жир имеется и взрослого человека.Высшие жирные кислоты являются основным продуктом гидролиза липидов в кишечнике. Суточная потребность в них составляет 10—12 г. Линолевая и линоленовая кислоты содержатся в растительных жирах, арахидоновая — только в животных. Они необходимы для построения и сохранения липопротеидных клеточных мембран, для синтеза простагландинов и половых гормонов.
Дефицит незаменимых жирных кислот в пище приводит к замедлению роста и развития организма, снижению репродуктивной функции и различным поражениям кожи.
Регуляция липолиза и липогенеза осуществляется гормонами надпочечников (адреналин) и поджелудочной железы (инсулин), усиливают липолиз, активируют фазу катаболизма. Хронический стресс, сопровождаемый напряжением симпатико-адреналовой системы, приводит к истощению жировых депо и потере массы тела. Напротив, дефицит инсулина, например, при сахарном диабете, сочетается с ожирением.
Незаменимые сложные жиры — фосфатиды и стерины. Ими поддерживается постоянство состава цитоплазмы нервных клеток, синтезируются половые гормоны и гормоны коркового вещества надпочечников, некоторые витамины (например, витамин Д).
Обмен белков
Функции белков в организме многообразны. Пластическое или структурное значение белков состоит в том, что они входят в состав всех клеток и межтканевых структур, а также обеспечивают рост и развитие организма за счет процессов биосинтеза.
Каталитическая, или ферментативная, активность белков регулирует скорость биохимических реакций, определяет все стороны обмена веществ и образования энергии не только из самих протеинов, но и из углеводов и жиров.
Защитная функция заключается в образовании иммунных белков — антител. Белки способны связывать токсины и яды, обеспечивают свертываемость крови (гемостаз).
Транспортнаяфункция — перенос кислорода и двуокиси углерода эритроцитным белком — гемоглобином; связывание и перенос некоторых ионов (железо, медь, водород), лекарственных веществ, токсинов.
Энергетическая роль белков определяется их способностью освобождать при окислении энергию: 1 г белка аккумулирует 4 ккал. По степени важности пластическая роль белков в метаболизме превосходит их собственную энергетическую, а также пластическую роль других питательных веществ. Особенно велика потребность в белке в периоды роста, беременности, выздоровления после тяжелых заболеваний.
Для поддержания азотистого равновесия в организме требуется как минимум 30—45 г животного белка в сутки — физиологический минимум белка.
Обмен энергии
В основе процессов обмена энергии лежат законы термодинамики — взаимных превращений различных видов энергии при переходах ее от одних тел к другим в форме теплоты или работы.
С точки зрения термодинамики живые организмы относятся к открытым стационарным неравновесным системам. Это означает, что:
1) они обмениваются с окружающей средой веществом и энергией;
2) способны в течение определенного времени удерживать свои основные параметры и под влиянием внешней среды переходить из одного стационарного состояния в другое в пределах колебаний жизненно важных констант, допустимых для сохранения жизни;
3) благодаря наличию в организме множества градиентов и потенциалов создаются условия для неравновесного распределения вещества и энергия между живыми системами и окружающей средой.
Принцип устойчивого неравновесия живых систем гласит: «Живые системы никогда не бывают в равновесии и исполняют за счет своей свободной энергии постоянную работу против равновесия, требуемого законами физики и химии».
Законы термодинамики
Первый закон термодинамики — закон сохранения и превращения энергии (Ломоносов М.В., 1748).
«Энергия не исчезает и не творится вновь, а только переходит из одной формы в другую: механическая работа, кинетическая энергия и теплота могут превращаться друг в друга».
Второй закон термодинамики (Больцман, 1880) гласит:
«Если любой вид энергии можно трансформировать в эквивалентное количество тепла, то в случае обратного превращения полная трансформация невозможна».
Свободная энергия способна к превращениям и к совершению полезной работы. Связанная энергия составляет ту «непроизводительную» часть, которая не переходит в другие формы и рассеивается в виде тепла, характеризуя меру термодинамической неупорядоченности системы, называемую эктропией.