Общие представления о ноцицептивной и антиноцицептивной системах. Понятие о ноцицепторах. Особенности специальных классов ноцицептторов (TRP, ASIC-каналы и др.).
Восприятие повреждающих раздражений осуществляется ноцицепторами — сенсорными рецепторами, которые ответственны за передачу и кодирование повреждающих стимулов. Ноцицепторы в виде свободных нервных окончаний широко распределяются в коже, подкожной ткани, надкостнице, суставах, мышцах и во внутренних органах.
Ноцицепторы могут быть активированы сильным механическим стимулом (укол, щипок, удар) или термическим раздражением (нагревание или охлаждение), а также действием альгогенов — химических веществ, вызывающих в минимальных концентрациях болевое ощущение. Из-за своей различной чувствительности к механическим, термическим и химическим стимулам ноцицепторы представляют гетерогенную группу. Некоторые ноцицепторы реагируют исключительно на химические стимулы, другие — на механические и/или температурные воздействия. Часть ноцицепторов («молчащие» ноцицепторы) в нормальных условиях не отвечают ни на один из этих раздражителей и становятся возбудимыми после повреждения или воспаления тканей. Большинство ноцицепторов способны реагировать одновременно на механические, термические и химические стимулы — иными словами, они полимодальны. Общим свойством для всех ноцицепторов является более высокий порог их активации по сравнению с механо- и терморецепторами, реагирующими на тактильные, тепловые или холодовые раздражения. Ноцицепторы имеют дискретное распределение по поверхности кожи, отличное от механо- и терморецепторов. И их точечная активация при помощи волосков Фрея или фокусированного ультразвука сразу приводит к возникновению резкой боли.
Активация ноцицепторов в условиях повреждения тканей осуществляется химическими веществами (альгогенами) при помощи рецептор-опосредованного механизма.
Тканевые альгогены выделяются во внеклеточную среду при повреждении мембран тучных клеток (гистамин), тромбоцитов (серотонин, АТФ), нейтрофилов (лейкотриены), макрофагов (интерлейкин-1, фактор некроза опухоли), эндотелия (интерлейкин-1, фактор некроза опухоли, эндотелины, простагландины, оксид азота).
В другую группу входят альгогены плазмы крови (брадикинин, каллидин), которые, выделяясь из крови в ткани, взаимодействуют с ноцицепторами локально в области повреждения.
Третью группу составляют альгогены, выделяющиеся из периферических окончаний С-волокон (субстанция P, нейрокинин А, кокальцигенин).
В большинстве случаев альгогены реализуют свое возбуждающее воздействие на ноцицепторы посредством их взаимодействия с соответствующими мембранными рецепторными комплексами. Благодаря достижениям молекулярной биологии в настоящее время на мембране свободного нервного окончания ноцицепторов идентифицированы рецепторы к брадикинину, серотонину, простагландинам, АТФ, капсаицину, ноцицептину, гистамину, иону водорода и др.
Пищеварение
Значение процессов пищеварения в функции пищеварительного тракта. История развития физиологии пищеварения. Роль И.П. Павлова в создании учения о пищеварении и введение методов хронического эксперимента при изучении функций пищеварительного тракта.
Организм человека и животного – это открытая термодинамическая система, которая постоянно обменивается веществом и энергией с окружающей средой. Организм требует пополнения энергетического и строительного материала. Это необходимо для работы, поддержания температуры, восстановления тканей. Эти материалы человек и животные получает из окружающей среды в виде животного или растительного происхождения. В пищевых продуктах в разных соотношениях питательные вещества – белки, жиры.Питательные вещества – это крупные полимерные молекулы. Пища также содержит воду, минеральные соли, витамины. И хотя эти вещества не являются источником энергии, они являются очень важными компонентами для жизнедеятельности. Питательные вещества из пищевых продуктов не могут быть сразу усвоены; для этого необходима обработка питательных веществ в ЖКТ, чтобы продукты переваривания могли быть использованы.
Длина пищеварительного тракта равна примерно 9 м. В состав пищеварительной системы входит ротовая полость, глотка пищевод, желудок, тонкая и толстая кишка, прямая кишка и анальный канал. Имеются добавочные органы ЖКТ - они включают язык, зубы, слюнные железы, поджелудочную железу, печень и желчный пузырь.
Попытки изучить процессы пищеварения начинаются ужу в 18 веке, так например Реамюр пытался получить желудочный сок, путем закладывание губки подвязанной на ниточке в желудок и получали пищеварительный сок. Были попытки вживлять стеклянные или металлические трубочки в протоки желез, но они довольно быстро выпадали и присоединялась инфекция. Первые клинические наблюдения а человеке были проведены при ранении желудка. В 1842 году московский хирург Басовналожил фистулу на желудок и закрывалась пробкой вне процессов пищеварения. Эта операция позволяла получать желудочный сок но недостатком было то, что он был смешан с пищей. Позднее в лаборатории Павлова эта операция была дополнена перерезкой пищевод ан шее. Такой опыт называют опытом мнимого кормления, а уже после кормления пережеванная пища осуществляется ее переваривание.
Английский физиолог Гейденгайнпредложил выделять маленький желудочек из большого, это позволяло получать чистый желудочный сок, несмешанный с пищей, но недостатком операции – разрез – перпендикулярно большой кривизне – это пересекало нерв – вагус. На маленький желудочек могли действовать только гуморальные факторы.
Павлов предложил делать параллельно большой кривизне, вагус не перерезался, он отражал весь ход пищеварения в желудке с участием и нервных и гуморальных факторов. И.П. Павлов поставил задачей изучать функцию пищеварительного тракта максимально приближенной к нормальным условиям и Павлов разрабатывает методы физиологической хирургии осуществляя разнообразные операции на животных, которые в последующим помогли в изучении пищеварения. В основном операции были направлены на наложение фистул.
Фистула – искусственное сообщение полости органа или протока железы с окружающей средой для получения содержимого и после операции животное поправлялось. Дальше следовала восстановление, длительное питание.
В физиологии проводится острый опыты – однократно под наркозом и хронический опыт – в условиях максимально приближенным к нормальным – с наркозом, без болевых факторов – это дает более полное представление о функции. Павлов разрабатывает фистулы слюнных желез, операцию маленького желудочка, эзофаготомию, желчного пузыря и протока поджелудочной железы.
Первая заслуга Павлова в пищеварении состоит в разработке опытов хронического эксперимента. Далее Иван Петрович Павлов установил зависимость качества и количество секретов от вида пищевого раздражителя.
В третьих – приспособляемость желез к условиям питании. Павлов показал ведущее значение нервного механизма в регуляции пищеварительных желез. Работы Павлова в области пищеварения были обобщены в его книге «О работе важнейших пищеварительных желез» В 1904 году Павлов был удостоен Нобелевской премии. В 1912 году университет в Англии Ньютон, Байрон избирают Павлова почетным доктором кембриджского университета и на церемонии посвящения произошел такой эпизод, когда студенты Кембриджа спустили игрушечную собачку с многочисленными фистулами.
Пищеварение в полости рта. Слюнные железы, состав и значение слюны в пищеварении. Приспособляемость деятельности желез к качеству пищи. Методика изучения функций слюнных желез. Особенности функций слюнных желез у детей.
Слюна образуется тремя парами слюнных желез – околоушная, расположенная между челюстью и ухом, подчелюстная, расположенная под нижней челюстью, и подъязычная. Мелкие слюнные железы – работают постоянно в отличие от крупных.
Околоушная железа состоит только из серозных клеток с водянистым секретом. Подчелюстная и подъязычная железывыделяют смешанный секрет, т.к. включают в себя и серозные и слизистые клетки. Секреторной единицей слюнной железы –саливон, в который входит ацинус, слепо заканчивающийся расширение и образован ацинарными клетками, ацинус, затем открывается во вставочный проток, который переходит в исчерченный проток. Клетки ацинуса секретируют белки и электролиты. Сюда же поступает и вода. Затем, коррекция содержания электролитов в слюне осуществляется вставочными и исчерченными протоками. Секреторные клетки еще окружены миоэпителиальными клетками, способными к сокращению и миоэпителиальные клетки сокращаясь выдавливают секрет и способствуют его продвижению по протоку. Слюнные железы получаю обильное кровоснабжение, кроваток в них в 20 раз больше чем в других тканях. Поэтому эти небольшие по размеру органы обладают довольно мощной секреторной функцией. За сутки вырабатываются от 0,5 – 1,2 л. слюны.
Слюна.
· Вода – 98,5%- 99 %
· Плотный остаток 1-1,5%.
· Электролиты – К, НСО3, Na, Cl, I2
Слюна выделяемая в протоках гипотонична в сравнении с плазмой. В ацинусах происходит выделение электролитов секреторными клетками и они содержатся в таком же количестве как и в плазме, но по мере движения слюны по протокам происходит поглощение ионов натрия, хлора, количество ионов калия и бикарбоната, становится больше. Слюна характеризуется преобладанием калия и бикарбоната. Органический состав слюны представлен ферментами- альфа-амилаза(птиалин), язычная липаза – вырабатывается железами, располагающимися в корне языка.
Слюнные железы содержат каликреин, слизь, лактоферин – связывают железо и способствует уменьшению бактерий, гликопротеины лизоцим, иммуноглобулины – А,М, антигены А, Б, АБ, 0.
Слюна выводится по протокам – функции - смачивание, формирование пищевого комка, глотаний. В ротовой полости – начальный этап расщепления углеводов и жиров. Полного расщепления не может происходить т.к. короткое время нахождение пищи в пищевой полости. Оптимум действия слюны – слабощелочная среда. PН слюны = 8. Слюна ограничивает рост бактерий, способствует заживлению повреждений, отсюда зализывание ран. Слюна нам нужна для нормальной функции речи.
Фермент амилаза слюны осуществляет расщепление крахмала до мальтозы и мальтотриозы. Амилаза слюны сходна с амилазой поджелудочного сока, который также расщепляет углеводы до мальтозы и мальтотриозы. Мальтаза и изомальтаза, расщепляет эти вещества до глюкозы.
Липаза слюны начинает расщеплять жиры и ферменты продолжают свое действие в желудке, пока не сменится значение рН.