Ультрафиолетовое излучение (УФ)

Ультрафиолетовое излучениепредставляет со­бой невидимое глазом электромагнитное излучение, зани­мающее в электромагнитном спектре промежуточное по­ложение между светом и рентгеновским излучением (200— 400 нм).

УФ-лучи обладают способностью выдавать фотоэлект­рический эффект, проявлять фотохимическую активность (развитие фотохимических реакций), вызывать люминес­ценцию и обладают значительной биологической активнос­тью.

Известно, что при длительном недостатке солнечного света возникают нарушения физиологического равновесия организма, развивается своеобразный симптомокомплекс, именуемый "световое голодание".

Наиболее часто следствием недостатка солнечного света являются авитаминоз D, ослабление защитных иммунобиологических реакций организма, обострение хронических заболеваний, функциональные расстройства нервной сис­темы.

УФ-облучение малыми дозами оказывает благоприят­ное стимулирующее действие на организм.

Активизируется деятельность сердца, улучшается об­мен веществ, понижается чувствительность к некоторым вредным веществам из-за усиления окислительных процес­сов в организме (марганец, ртуть, свинец) и более быстро­го выведения их из организма, улучшается кроветворение, снижается заболеваемость простудными заболеваниями, снижается утомляемость, повышается работоспособность, УФ-излучение от производственных источников (электро­сварка, ртутно-кварцевые лампы) может стать причиной острых и хронических заболеваний и поражений. Наиболее уязвимым для УФ-излучений являются органы зрения (фо­тоофтальмия, хронический конъюнктивит, катаракта хру­сталика). Может быть острое воспаление кожных покро­вов, иногда с отеком и образованием пузырей. Может под­няться температура тела, появиться озноб, головные боли, возможен рак кожи.

Для защиты кожи от УФ-излучения используют защит­ную одежду, противосолнечные экраны (навесы и т. п.), спе­циальные покровные кремы.

Важное гигиеническое значение имеет способность УФ-излучения производственных источников изменять га­зовый состав атмосферного воздуха вследствие его иони­зации. При этом в воздухе образуются озон и оксиды азота. Эти газы, как известно, обладают высокой токсичностью и могут представлять большую опасность, особенно при вы­полнении сварочных работ, сопровождающихся УФ-излучением, в ограниченных, плохо проветриваемых помеще­ниях или в замкнутых пространствах.

С целью профилактики отравлений окислами азота и озоном соответствующие помещения должны быть обору­дованы местной или общеобменной вентиляцией, а при сварочных работах в замкнутых объемах необходимо пода­вать свежий воздух непосредственно под щиток или шлем.

Нормирование. Интенсивность УФ-излучения на промышленных пред­приятиях установлена СН-4557-88.

Защитная одежда из поплина или других тканей долж­на иметь длинные рукава и капюшон. Глаза защищают специ­альными очками со стеклами, содержащими оксид свинца, но даже обычные стекла не пропускают УФ-лучи с длиной волны короче 315 нм.

4.9.Инфракрасное излучение

Инфракрасное излучение(ИК) — часть электромагнитного спек­тра с длиной волны λ= 780 нм....1000 мкм, энергия которого при по­глощении в веществе вызывает тепловой эффект. С учетом особенно­стей биологического действия ИК-диапазон спектра подразделяют натри области: ИК-А (780...1400 нм), ИК-В (1400...3000 нм) и ИК-С (300 нм....1000 мкм). Наиболее активно коротковолновое ИК-излучение, так как оно обладает наибольшей энергией фотонов, способно глубоко проникать в ткани организма и интенсивно поглощаться во­дой, содержащейся в тканях. Например, интенсивность 70 Вт/м2 при длине волны λ = 1500 нм уже дает повреждающий эффект вследствие специфического воздействия лучистой теплоты (в отличие от конвек­ционной) на структурные элементы клеток тканей, на белковые мо­лекулы с образованием биологически активных веществ.

Наиболее поражаемые у человека органы — кожный покров и ор­ганы зрения; при остром повреждении кожи возможны ожоги, резкое расширение артериокапилляров, усиление пигментации кожи; при хронических облучениях изменение пигментации может быть стой­ким, например эритемоподобный (красный) цвет лица у рабочих — стеклодувов, сталеваров. К острым нарушениям органа зрения относится ожог конъюнктивы, помутнение и ожог роговицы, ожог тканей передней камеры глаза. При остром интенсивном ИК-излуче­нии (100 Вт/см2 для λ = 780... 1800 нм) и длительном облучении (0,08...0,4 Вт/см2) возможно образование катаракты. Коротковолно­вая часть ИК-излучения может фокусироваться на сетчатке, вызывая ее повреждение. ИК-излучение воздействует, в частности, на обмен­ные процессы в миокарде, водно-электролитный баланс в организме, на состояние верхних дыхательных путей (развитие хронического ла­рингита, ринита, синуситов), не исключается мутагенный эффект ИК-облучения.

Нормирование. Нормирование ИК-излученияосуществляется по интенсивности допустимых интегральных потоков излучения с учетом спектрально­го состава, размера облучаемой площади, защитных свойств спецоде­жды для продолжительности действия более 50 % смены в соответст­вии с ГОСТ 12.1.005—88 и Санитарными правилами и нормами Сан-ПиН 2.2.4.548—96 «Гигиенические требования к микроклимату про­изводственных помещений».

Ионизирующее излучение

Ионизирующим излучением называется излучение, взаимодействие которого с веществом приводит к обра­зованию в этом веществе ионов разного знака. Ионизи­рующее излучение состоит из заряженных и незаря­женных частиц, к которым относятся также фотоны. Энергию частиц ионизирующего излучения измеряют во внесистемных единицах— электрон-вольтах, эВ. 1эВ = 1,6 Ультрафиолетовое излучение (УФ) - student2.ru 10-19 Дж.

Различают корпускулярное и фотонное ионизирую­щее излучение.

Корпускулярное ионизирующее излучение — поток элементарных частиц с массой покоя, отличной от нуля, образующихся при радиоактивном распаде, ядерных превращениях, либо генерируемых на ускорителях. К не­му относятся: α- и β-частицы, нейтроны (n), протоны (р) и др.

α-излучение — это поток частиц, являющихся ядра­ми атома гелия и обладающих двумя единицами заряда. Энергия α-частиц, испускаемых различными радионук­лидами, лежит в пределах 2-8 МэВ. При этом все ядра данного радионуклида испускают α-частицы, обладаю­щие одной и той же энергией.

β-излучение — это поток электронов или позитро­нов. При распаде ядер β-активного радионуклида, в от­личие от α-распада, различные ядра данного радионук­лида испускают β-частицы различной энергии, поэтому энергетический спектр β-частиц непрерывен. Средняя энергия β-спектра составляет примерно 0,3 Етах. Мак­симальная энергия β-частиц у известных в настоящее время радионуклидов может достигать 3,0-3,5 МэВ.

Нейтроны (нейтронное излучение) — нейтральные элементарные частицы. Поскольку нейтроны не имеют электрического заряда, при прохождении через вещество они взаимодействуют только с ядрами атомов. В резуль­тате этих процессов образуются либо заряженные части­цы (ядра отдачи, протоны, нейтроны), либо g-излучение, вызывающие ионизацию. По характеру взаимодействия со средой, зависящему от уровня энергии нейтронов, они условно разделены на 4 группы:

1) тепловые нейтроны 0,0-0,5 кэВ;

2) промежуточные нейтроны 0,5-200 кэВ;

3) быстрые нейтроны 200 Кэв — 20 Мэв;

4) релятивистские нейтроны свыше 20 МэВ.

Фотонное излучение — поток электромагнитных ко­лебаний, которые распространяются в вакууме с посто­янной скоростью 300000 км/с. К нему относятся g-излу­чение, характеристическое, тормозное и рентгеновское
излучение.

Обладая одной и той же природой, эти виды электро­магнитных излучений различаются условиями образо­вания, а также свойствами: длиной волны и энергией.

Так, g-излучение испускается при ядерных превра­щениях или при аннигиляции частиц.

Характеристическое излучение — фотонное излуче­ние с дискретным спектром, испускаемое при измене­нии энергетического состояния атома, обусловленного перестройкой внутренних электронных оболочек.

Тормозное излучение — связано с изменением кине­тической энергии заряженных частиц, имеет непрерыв­ный спектр и возникает в среде, окружающей источник β-излучения, в рентгеновских трубках, в ускорителях электронов и т. п.

Рентгеновское излучение — совокупность тормозно­го и характеристического излучений, диапазон энергии фотонов которых составляет 1 кэВ – 1 МэВ.

Излучения характеризуются по их ионизирующей и проникающей способности.

Ионизирующая способность излучения определяется удельной ионизацией, т. е. числом пар ионов, создавае­мых частицей в единице объема массы среды или на единице длины пути. Излучения различных видов обла­дают различной ионизирующей способностью.

Проникающая способность излучений определяется величиной пробега. Пробегом называется путь, прой­денный частицей в веществе до ее полной остановки, обусловленной тем или иным видом взаимодействия.

α-частицы обладают наибольшей ионизирующей спо­собностью и наименьшей проникающей способностью. Их удельная ионизация изменяется от 25 до 60 тыс. пар ионов на 1 см пути в воздухе. Длина пробега этих частиц в воздухе составляет несколько сантиметров, а в мягкой биологической ткани — несколько десятков микрон.

β-излучение имеет существенно меньшую ионизиру­ющую способность и большую проникающую способ­ность. Средняя величина удельной ионизации в воздухе составляет около 100 пар ионов на 1 см пути, а макси­мальный пробег достигает нескольких метров при боль­ших энергиях.

Наименьшей ионизирующей способностью и наиболь­шей проникающей способностью обладают фотонные излучения. Во всех процессах взаимодействия электро­магнитного излучения со средой часть энергии преобра­зуется в кинетическую энергию вторичных электронов, которые, проходя через вещество, производят иониза­цию. Прохождение фотонного излучения через веще­ство вообще не может быть охарактеризовано понятием пробега. Ослабление потока электромагнитного излуче­ния в веществе подчиняется экспоненциальному закону и характеризуется коэффициентом ослабления р., кото­рый зависит от энергии излучения и свойств вещества. Но какой бы ни была толщина слоя вещества, нельзя пол­ностью поглотить поток фотонного излучения, а можно только ослабить его интенсивность в любое число раз.

В этом существенное отличие характера ослабления фотонного излучения от ослабления за­ряженных частиц, для кото­рых существует минимальная толщина слоя вещества-поглотителя (пробег), где происходит полное поглощение потока заряженных частиц.

Биологическое действие ионизирующих излучений. Под воздействием ионизирующего излучения на орга­низм человека в тканях могут происходить сложные физические и биологические процессы. В результате ионизации живой ткани происходит разрыв молекуляр­ных связей и изменение химической структуры различ­ных соединений, что в свою очередь приводит к гибели клеток.

Еще более существенную роль в формировании био­логических последствий играют продукты радиолиза воды, которая составляет 60-70% массы биологической ткани. Под действием ионизирующего излучения на воду образуются свободные радикалы Н·и ОН·, а в присут­ствии кислорода также свободный радикал гидропероксида (НО·2) и пероксида водорода (Н2O2), являющи­еся сильными окислителями. Продукты радиолиза вступают в химические реакции с молекулами тканей, образуя соединения, не свойственные здоровому орга­низму. Это приводит к нарушению отдельных функций или систем, а также жизнедеятельности организма в целом.

Интенсивность химических реакций, индуцирован­ных свободными радикалами, повышается, и в них вов­лекаются многие сотни и тысячи молекул, не затрону­тых облучением. В этом состоит специфика действия ионизирующего излучения на биологические объекты, то есть производимый излучением эффект обусловлен не столько количеством поглощенной энергии в облучае­мом объекте, сколько той формой, в которой эта энер­гия передается. Никакой другой вид энергии (тепловой, электрической и др.), поглощенной биологическим объек­том в том же количестве, не приводит к таким измене­ниям, какие вызывают ионизирующие излучения.

Ионизирующая радиация при воздействии на организм человека может вызвать два вида эффектов, которые клинической медициной относятся к болезням: детерминированные пороговые эффекты (лу­чевая болезнь, лучевой ожог, лучевая катаракта, лучевое бесплодие, аномалии в развитии плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наслед­ственные болезни).

Нарушения биологических процессов могут быть либо обратимыми, когда нормальная работа клеток облучен­ной ткани полностью восстанавливается, либо необрати­мыми, ведущими к поражению отдельных органов или всего организма и возникновению лучевой болезни.

Различают две формы лучевой болезни — острую и хроническую.

Острая форма возникает в результате облучения боль­шими дозами в короткий промежуток времени. При дозах порядка тысяч рад поражение организма может быть мгновенным («смерть под лучом»). Острая лучевая болезнь может возникнуть и при попадании внутрь орга­низма больших количеств радионуклидов.

Острые поражения развиваются при однократном равномерном гамма-облучении всего тела и поглощенной дозе выше 0,5 Гр. При дозе 0,25...0,5 Гр могут наблюдаться временные изменения в крови, которые быстро нормализуются. В интервале дозы 0,5...1,5 Гр возникает чувство усталости, менее чем у 10 % облученных может наблюдаться рвота, умеренные изменения в крови. При дозе 1,5...2,0 Гр наблюдает­ся легкая форма острой лучевой болезни, которая проявляется продол­жительной лимфопенией (снижение числа лимфоцитов — иммунокомпетентных клеток) , в 30...50 % случаев — рвота в первые сутки после облучения. Смертельные исходы не регистрируются.

Лучевая болезнь средней тяжести возникает при дозе 2,5...4,0 Гр. Почти у всех облученных в первые сутки наблюдаются тошнота, рво­та, резко снижается содержание лейкоцитов в крови, появляются подкожные кровоизлияния, в 20 % случаев возможен смертельный исход, смерть наступает через 2...6 недель после облучения. При дозе 4,0...6,0 Гр развивается тяжелая форма лучевой болезни, приводящая в 50 % случаев к смерти в течение первого месяца. При дозах, превы­шающих 6,0 Гр, развивается крайне тяжелая форма лучевой болезни, которая почти в 100 % случаев заканчивается смертью вследствие кровоизлияния или инфекционных заболеваний. Приведенные дан­ные относятся к случаям, когда отсутствует лечение. В настоящее время имеется ряд противолучевых средств, которые при комплекс­ном лечении позволяют исключить летальный исход при дозах около 10 Гр.

Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, кото­рые вызывают острую форму. Наиболее характерными признаками хронической лучевой болезни являются изменения в крови, ряд сим­птомов со стороны нервной системы, локальные поражения кожи, поражения хрусталика, пневмосклероз (при ингаляции плутония-239), снижение иммунореактивности организма.

Степень воздействия радиации зависит от того, является облуче­ние внешним или внутренним (при попадании радиоактивного изо­топа внутрь организма). Внутреннее облучение возможно при вдыха­нии, заглатывании радиоизотопов и проникновении их в организм через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам ра­диации. Кальций, радий, стронций и другие накапливаются в костях, изотопы йода вызывают повреждение щитовидной железы, редкозе­мельные элементы — преимущественно опухоли печени. Равномер­но распределяются изотопы цезия, рубидия, вызывая угнетение кро­ветворения, атрофию семенников, опухоли мягких тканей. При внут­реннем облучении наиболее опасны альфа-излучающие изотопы по­лония и плутония.

Способность вызывать отдаленные последствия — лейкозы, зло­качественные новообразования, раннее старение — одно из ковар­ных свойств ионизирующего излучения.

Для решения вопросов радиационной безопасности в первую очередь представляют интерес эффекты, наблю­даемые при «малых дозах» — порядка нескольких сантизивертов в час и ниже, которые реально встречаются при практическом использовании атомной энергии.

Весьма важным здесь является то, что, согласно со­временным представлениям, выход неблагоприятных эффектов в диапазоне «малых доз», встречающихся в обычных условиях, мало зависит от мощности дозы. Это означает, что эффект определяется прежде всего сум­марной накопленной дозой вне зависимости от того, по­лучена она за 1 день, за 1 с или за 50 лет. Таким обра­зом, оценивая эффекты хронического облучения, следует иметь в виду, что эти эффекты накапливаются в орга­низме в течение длительного времени.

Дозиметрические величины и единицы их измерения. Действия ионизирующего излучения на вещество проявляется в ионизации и возбуждении атомов и моле­кул, входящих в состав вещества. Количественный ме­рой этого воздействия служит поглощенная доза Дп — средняя энергия, переданная излучением единице мас­сы вещества. Единица поглощенной дозы — грей (Гр). 1 Гр = 1 Дж/кг. На прак­тике применяется также внесистемная единица — 1 рад = 100 эрг/г = 1 Ультрафиолетовое излучение (УФ) - student2.ru 10-2 Дж/кг = 0,01 Гр.

Поглощенная доза излучения зависит от свойств из­лучения и поглощающей среды.

Для заряженных частиц (α, β, протонов) небольших энергий, быстрых нейтронов и некоторых других излу­чений, когда основными процессами их взаимодействия с веществом являются непосредственная ионизация и возбуждение, поглощенная доза служит однозначной ха­рактеристикой ионизирующего излучения по его воз­действию на среду. Это связано с тем, что между пара­метрами, характеризующими данные виды излучения (поток, плотность потока и др.) и параметром, характе­ризующим ионизационную способность излучения в сре­де — поглощенной дозой, можно установить адекватные прямые зависимости.

Для рентгеновского и g-излучений таких зависимос­тей не наблюдается, так как эти виды излучений кос­венно ионизирующие. Следовательно, поглощенная доза не может служить характеристикой этих излучений по их воздействию на среду.

До последнего времени в качестве характеристики рентгеновского и g-излучений по эффекту ионизации используют так называемую экспозиционную дозу. Экс­позиционная доза выражает энергию фотонного излуче­ния, преобразованную в кинетическую энергию вторич­ных электронов, производящих ионизацию в единице массы атмосферного воздуха.

За единицу экспозиционной дозы рентгеновского и g-излучений принимают кулон на килограмм (Кл/кг). Это такая доза рентгеновского или g-излучения, при воздействии которой на 1 кг сухого атмосферного возду­ха при нормальных условиях образуются ионы, несу­щие 1 Кл электричества каждого знака.

На практике до сих пор широко используется внеси­стемная единица экспозиционной дозы — рентген. 1 рен­тген (Р) — экспозиционная доза рентгеновского и g-из­лучений, при которой в 0,001293 г (1 см3 воздуха при нормальных условиях) образуются ионы, несущие заряд в одну электростатическую единицу количества элект­ричества каждого знака или 1 Р=2,58 Ультрафиолетовое излучение (УФ) - student2.ru 10-4 Кл/кг. При экспозиционной дозе в 1 Р будет обра­зовано 2,08 Ультрафиолетовое излучение (УФ) - student2.ru 109 пар ионов в 0,001293 г атмосферного воздуха.

Исследования биологических эффектов, вызываемых различными ионизирующими излучениями, показали, что повреждение тканей связано не только с количеством поглощенной энергии, но и с ее пространственным рас­пределением, характеризуемым линейной плотностью ионизации. Чем выше линейная плотность ионизации, или, иначе, линейная передача энергии частиц в среде на единицу длины пути (ЛПЭ), тем больше степень био­логического повреждения. Чтобы учесть этот эффект, введено понятие эквивалентной дозы.

Доза эквивалентная HT,R — поглощенная доза в органе или ткани DT,R ,умноженная на соответствующий взвешивающий коэффициент для данного излучения WR:

Ht,r =WRDT,R

Единицей измерения эквивалентной дозы является Джžкг-1, имеющий специальное наименование зиверт (Зв).

Значения WR для фотонов, электронов и мюонов любых энергий составляет 1, для α-частиц, осколков деления, тяжелых ядер — 20. Взвешивающие коэффициенты для отдельных видов излучения при расчете эквивалентной дозы:

· Фотоны любых энергий…………………………………………………….1

· Электроны и мюоны (менее 10 кэВ)……………………………………….1

· Нейтроны с энергией менее 10 кэВ………………………………………...5

от 10 кэВ до 100 кэВ ……....………………………………………………10

от 100 кэВ до 2 МэВ………………………………………………………..20

от 2 МэВ до 20 МэВ………………………………………………………..10

более 20 МэВ…………………………………………………………………5

· Протоны, кроме протонов отдачи,

энергия более 2 МэВ………………………………….………………5

· Альфа-частицы,

осколки деления, тяжелые ядра………………………………………….20

Доза эффективная — величина, используемая как мера риска воз­никновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности Она представляет сумму произведений эквивалентной дозы в органе НτТ на соответствующий взвешивающий коэффициент для данного орга­на или ткани WT:

Ультрафиолетовое излучение (УФ) - student2.ru Ультрафиолетовое излучение (УФ) - student2.ru

гдеНτТ — эквивалентная доза в ткани Т за время τ.

Единица измерения эффективной дозы — Дж × кг-1, называемая зивертом (Зв).

Значения WT для отдельных видов ткани и органов приведены ниже:

Вид ткани, орган W1

Гонады................................................................................................................0,2

Костный мозг, (красный), легкие, желудок………………………………0,12

Печень, грудная железа, щитовидная железа. …………………………...0,05

Кожа……………………………………………………………………………0,01

Поглощенная, экспозиционная и эквивалентная дозы, отнесенные к единице времени, носят название мощнос­ти соответствующих доз.

Самопроизвольный (спонтанный) распад радиоактив­ных ядер следует закону:

N = N0 ехр(-λt),

где N0 — число ядер в данном объеме вещества в момент времени t = 0 ; N — число ядер в том же объеме к моменту времени t; λ — постоянная распада.

Постоянная λ имеет смысл вероятности распада ядра за 1 с; она равна доле ядер, распадающихся за 1 с. По­стоянная распада не зависит от общего числа ядер и имеет вполне определенное значение для каждого ра­диоактивного нуклида.

Приведенное выше уравнение показывает, что с те­чением времени число ядер радиоактивного вещества уменьшается по экспоненциальному закону.

В связи с тем, что период полураспада значительно­го числа радиоактивных изотопов измеряется часами и сутками (так называемые короткоживущие изотопы), его необходимо знать для оценки радиационной опасно­сти во времени в случае аварийного выброса в окружаю­щую среду радиоактивного вещества, выбора метода де­зактивации, а также при переработке радиоактивных отходов и последующем их захоронении.

Описанные виды доз относятся к отдельному челове­ку, то есть являются индивидуальными.

Просуммировав индивидуальные эффективные экви­валентные дозы, полученные группой людей, мы при­дем к коллективной эффективной эквивалентной дозе, которая измеряется в человеко-зивертах (чел-Зв).

Следует ввести еще одно определение.

Многие радионуклиды распадаются очень медленно и останутся в отдаленном будущем.

Коллективную эффективную эквивалентную дозу, которую получат поколения людей от какого-либо ра­диоактивного источника за все время его существова­ния, называют ожидаемой (полной) коллективной эф­фективной эквивалентной дозой.

Активность препарата — это мера количества ра­диоактивного вещества.

Определяется активность числом распадающихся ато­мов в единицу времени, то есть скоростью распада ядер радионуклида.

Единицей измерения активности является одно ядер­ное превращение в секунду. В системе единиц СИ она получила название беккерель (Бк).

За внесистемную единицу активности принята кюри (Ки) — активность такого числа радионуклида, в кото­ром происходит 3,7×1010 актов распада в секунду. На практике широко пользуются производными Ки: мил­ликюри — 1 мКи = 1 ×10-3 Ки; микрокюри — 1 мкКи = 1 ×10-6 Ки.

Измерение ионизирующих излучений. Необходимо помнить, что не существует универсаль­ных методов и приборов, применимых для любых усло­вий. Каждый метод и прибор имеют свою область при­менения. Неучет этих замечаний может привести к грубым ошибкам.

В радиационной безопасности используют радиомет­ры, дозиметры и спектрометры.

Радиометры — это приборы, предназначенные для определения количества радиоактивных веществ (радио­нуклидов) или потока излучения. Например, газораз­рядные счетчики (Гейгера-Мюллера).

Дозиметры — это приборы для измерения мощнос­ти экспозиционной или поглощенной дозы.

Спектрометры служат для регистрации и анализа энергетического спектра и идентификации на этой осно­ве излучающих радионуклидов.

Нормирование.Вопросы радиационной безопасности регламентиру­ется Федеральным законом «О радиационной безопасно­сти населения», нормами радиационной безопасности (НРБ—99) и другими правилами и положениями. В зако­не «О радиационной безопасности населения» говорит­ся: «Радиационная безопасность населения — состояние защищенности настоящего и будущего поколений лю­дей от вредного для их здоровья воздействия ионизиру­ющего излучения» (статья 1).

«Граждане Российской Федерации, иностранные граждане и лица без гражданства, проживающие на тер­ритории Российской Федерации, имеют право на радиа­ционную безопасность. Это право обеспечивается за счет проведения комплекса мероприятий по предотвращению радиационного воздействия на организм человека иони­зирующего излучения выше установленных норм, пра­вил и нормативов, выполнения гражданами и организа­циями, осуществляющими деятельность с использованием источников ионизирующего излучения, требований к обеспечению радиационной безопасности» (статья 22).

Гигиеническая регламентация ионизирующего излученияосуществ­ляется Нормами радиационной безопасности НРБ—99 (Санитарны­ми правилами СП 2.6.1.758—99). Основные дозовые пределы облуче­ния и допустимые уровни устанавливаются для следующих категорий

облучаемых лиц:

· персонал — лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздейст­вия (группа Б);

· все население, включая лиц из персонала, вне сферы и усло­вий их производственной деятельности.

Для категорий облучаемых лиц устанавливают три класса норма­тивов: основные пределы доз (ПД), табл. 8, допустимые уровни, соответствующие основным пределам доз, и контрольные уровни.

Таблица 8

Наши рекомендации