Разность электрических потенциалов между наружной и внутренней поверхностями мембраны, в невозбужденном состоянии, называется потенциалом покоя.
В формировании электрической разности на мембране в состоянии покоя преимущественное значение имеет транспорт ионов калия. Используя метод меченных изотопов (42К) было установлено, что не менее 90% внутриклеточного калия свободно диффундирует и перемещается через мембрану клетки. Учитывая то, что внутри клетки концентрация ионов калия в 10-20 раз больше, чем снаружи, происходит диффузия этих ионов, которая определяет формирование мембранного потенциала (биопотенциала мембраны). Напомним, что ионы калия беспрепятственно покидают клетку по градиенту концентрации. В результате чего внутри клетки возникает недостаток этих ионов, а снаружи избыток. Полному выходу ионов калия препятствует отрицательный заряд на внутренней поверхности мембраны (притягивает ионы калия) и положительный заряд на наружной поверхности мембраны (отталкивает ионы калия). Восстановление внутриклеточной концентрации ионов калия происходит также в результате активного транспорта, посредством работы транспортной системы – фермента Na, K-ATФ-азы, которая откачивает ионы натрия из клетки и закачивает ионы калия в клетку за счет энергии гидролиза молекул АТФ.
Когда концентрационный и электрический градиенты ионов калия уравновесятся, число выходящих из клетки ионов сравнивается с числом входящих ионов в клетку, на клеточной мембране устанавливается так называемый равновесный потенциал мембраны. Равновесный потенциал для иона калия можно рассчитать по уравнению Нернста.
φмПП = RT/FZ · ln ([K+]в / [К+]н) (1)
где [K+]н и [K+]в – молярные концентрации ионов по обе стороны мембраны,
R – универсальная газовая постоянная (8,31 Дж/(моль · К)),
Т – температура, градусы Кельвина (T=273+t),
F – постоянная Фарадея (96500 Кл/моль),
Z – заряд иона.
Равновесный потенциал для иона калия составляет –70 мВ, а для иона натрия +55 мВ. Поскольку ионы натрия стремятся и проникают в некотором количестве в клетку, они уменьшают суммарный заряд мембраны в состоянии покоя, нейтрализуя отрицательно заряженные частицы внутри клетки.
Правило_1
Вход ионов натрия внутрь покоящейся клетки понижает мембранный потенциал покоя[9]
Определенное значение имеют ионы хлора, которые по концентрационному градиенту стремятся в клетку, но из-за электрического градиента проникают туда в небольшом количестве. Поэтому внутриклеточная концентрация ионов хлора значительно меньше внеклеточной концентрации. Поступление ионов хлора внутрь клетки увеличивает суммарный отрицательный заряд на внутренней мембране, который образуют крупные белковые молекулы цитоплазмы.
Правило_2
Вход ионов хлора внутрь покоящейся клетки повышает мембранный потенциал покоя
Определенную роль в формировании мембранного потенциала покоя играют поверхностные заряды клеточной мембраны и ионы кальция. Суммарный поверхностный заряд создают полярные молекулы билипидного слоя, вместе они понижают мембранный потенциал. Положительные ионы кальция взаимодействуют с наружными зарядами мембраны, нейтрализуют их и стабилизируют потенциал покоя нервной клетки. В результате потенциал покой представляет собой алгебраическую сумму всех электрических зарядов ионов вне и внутри клетки, а также сумму отрицательных зарядов внешних и внутренних поверхностных зарядов самой мембраны.
Помимо постоянной диффузии ионов по электрохимическому градиенту важную роль в формировании потенциала покоя мембраны нервной клетки играю ионные насосы, прежде всего натрий-калиевый насос. Он обеспечивает поддержание ассиметричного градиента концентрации ионов натрия и калия. Натрий-калиевый насос обеспечивает сопряженный транспорт двух ионов калия внутрь клетки и выведение трех ионов натрия из клетки за счет расщепления одной молекулы АТФ. Ассиметричный перенос ионов натрия и калия поддерживает избыток положительных ионов на внешней поверхности мембраны и увеличивает потенциал покоя на 5-10 мВ.
Таким образом, учитывая все факторы формирования электрического заряда на мембране нервной клетки, величина потенциала покоя составляет от -60 до -80 мВ относительно нулевого потенциала внешней среды.
Вопрос_19