Заполнение маргинальных дефектов коронок при рецессии десны
11. Подкладочный материал под композитные материалы, амальгаму, керамические вкладки. Стеклоиономерные прокладки компенсируют формирующее ся при усадке материала внутреннее напряжение, препятствуя деформации пломбы, а также предотвращают неблагоприятное воздействие пломбировочного материала на пульпу зуба.
12. Замещение дентина при использовании закрытого варианта "сэндвич"—техники. При этом варианте дефект дентина зуба частично или полностью за-
Рис. 15. Подготовка кариозной полости по методике "латерального туннеля" ("slot" — препарирование):
о — вестибулярный вид кариозной полости;
б — проксимальный вид кариозной полости;
в — проксимальный вид кариозной полости после препарирования
мещается стеклоиономерным цементом, а эмаль - композитным материалом Обладая хорошей адгезией и к ден тину, и к композиту, стеклоиономерный цемент является лучшим материалом для применения в этих целях
13. Реконструкция культи зуба при сильно разрушенной коронке перед протезированием, изготовление коронково-корневых вкладок. Стеклоиономерный цемент в данном случае, как и при использовании в технике "сэндвич", восполняет утраченный дентин зуба
14. Пломбирование корневых каналов с гуттаперчевыми штифтами.
15. Ретроградное пломбирование корневых каналов при резекции верхушки корня
16. Герметизация фиссур Хорошая фиксация без необходимости протравливания и способность выделять фтор делают данный материал привлекательным в качестве герметика фиссур, однако низкая прочность и высокая истираемость ограничивают его применение в этих случаях В качестве герметиков фиссур могут использоваться только цементы, предназначенные для постоянного пломбирования и рекомендованные для герметизации фирмой-изготовителем Некоторые авторы (I Omori, 1994) предлагают отдавать предпочтение стеклоиономерным герметикам при запечатывании фиссур только что прорезавшихся (или прорезывающихся) зубов, поскольку беспротравочный метод более щадящий в отношении чрезвычайно слабо минерализованных фиссур и не столь требователен к длительной изоляции операционного поля, которая во время работы в данном случае часто бывает затруднена
Условиями, при которых применение стеклоиономерных цементов предпочтительно перед использованием других пломбировочных материалов, в частнсти композиционных, являются
— плохая гигиена полости рта,
— множественный или вторичный кариес зубов,
— поражения твердых тканей зуба ниже уровня десны,
Показания к применению традиционных стеклоиономерных цементов
— невозможность технологически выполнить реставрацию композитом (высокое слюноотделение у детей, отсутствие необходимых условий и т п.)
Плохая гигиена при наличии в полости рта реставраций из композитных материалов может способствовать усиленному образованию зубной бляшки на границе зуба и реставрации, что часто приводит к развитию кариозного процесса Использование в данном случае стеклоионо-меров обеспечивает кариесстатическое действие за счет насыщения прилежащих тканей зуба фтором
Множественное поражение кариесом или наличие рецидивного кариеса (повторного развития кариеса уже леченного зуба при качественном его пломбировании) свидетельствует о необходимости применения у данного пациента материала, обладающего кариесстатическими свойствами Композиционные материалы, даже содержащие фтор, не могут обеспечить кариеспрофилактический эффект в такой степени, как стеклоиономерные цементы.
Глубокие поражения ниже уровня десны значительно затрудняют использование композиционных материалов Самоотвердевающие композиты обычно снабжены адгезив-ной системой, фиксирующейся только к протравленной эмали, которой на поверхности корня нет. При работе в подобных условиях с композитными материалами, отвердевающими под воздействием света, возникают проблемы, связанные с невозможностью хорошего просвечивания фотополимеризатором через склеиваемую поверхность (согласно принципу направленной полимеризации) и с неосуществимостью длительного процесса послойного нанесения материала из-за высокой влажности
Таким образом, стеклоиономерные цементы являются в данных ситуациях материалом выбора
Типы стеклоиономерных цементов
Традиционно стеклоиономерные цементы разделялись на три типа в зависимости от их клинического применения.
I тип — фиксирующие (лютинговые) цементы,
II тип — восстановительные (реставрационные) цементы,
1-й подтип — для эстетических реставраций;
2-й подтип — для нагруженных реставраций;
III тип — подкладочные (лайнинговые) цементы.
Некоторые авторы в отдельные группы выделяют све-тоотверждаемые материалы и стеклоиономерные цементы с добавками металлов — обычно серебра или порошка амальгамы.
В настоящее время назрела потребность в выделении еще одного типа стеклоиономерных цементов — для обту-рации корневых каналов
Стеклоиономерные цементы I типа
Фиксирующие, или лютинговые (англ lute - замазывать щели/герметизировать), стеклоиономерные цементы предназначены для фиксации вкладок, накладок, коронок, мостовидных протезов и других ортопедических конструкций, ортодонтических аппаратов Важным требованием к данной группе материалов является возможность получения тонкой (менее 25 мкм) пленки цемента, которая может заполнить пространство между поверхностью зуба и коронкой (до 20-25 мкм) и обеспечить минимальный контакт фиксирующего цемента с жидкостью полости рта. Толщина пленки, образуемой современными стек-лоиономерными цементами этого типа, достигает 11-13 мкм (КМайснер, 1998). Получение тонкой пленки возможно при маленьком размере частиц порошка (до 25 мкм) и жидкой консистенции замешанного материала. Для образования такой консистенции соотношение порошок/ жидкость снижается до 1,5 1. Рабочее время также связано с толщиной пленки. Продолжительное рабочее время обеспечивает более жидкую фазу, предпочтительную для укрепления ортопедических конструкций. Когда материал начинает отвердевать, его вязкость резко возрастает и не дает возможности ему затекать в узкие пространства При снижении соотношения порошка и жидкости уменьшается прочность материала, что можно компенсировать повышением соотношения алюминия и кремния Такое изменение снижает прозрачность цемента, однако в большинстве случаев для фиксирующих цементов этот недостаток некритичен.
Таким образом, отличительными признаками цементов этого типа являются уменьшенный размер стеклянных частиц, снижение соотношения между порошком и
Таблица 15. Сравнительная характеристика физических свойств фиксирующих стоматологических материалов (R.G.Graig, 1997)
Материал | Растворимость в воде (% в течение 24 ч) | Время затвердевания при 37 ° С и при 100 % влажности (мин) | Толщина пленки (мкм) |
Композитные материалы | 0,13 | 4-5 | 13-20 |
Цинк-фосфатные цементы | максимум 0,20 | 5-9 | максимум 25 |
Цинк-поликарбо-ксилатные цементы | меньше 0,05 | 7-9 | 25-48 |
Стеклоиономер-ные цементы | 0.40-1,50 (в среднем 1) | 6-8(9) | 22-24 |
Гибридьге стекло-иономеры | 0,07-0,40 | 5,5-6,0 | 10-22 |
Таблица 16. Сравнительная характеристикамеханических свойств фиксирующих стоматологичесих материалов (R.G.Graig, 1997)
Материал | Прочность на сжатие (МПа) | Прочность на растяжение (МПа) | Модуль эластичности (ГПа) | Прочность связи с дентином (МПа) |
Адгезивные смолы | 52-224 | 37-41 | 1,2-10,7 | 11-24 с бондагентом |
Композитные материалы | 180-265 | 34-37 | 4,4-6.5 | 18-30 с бондагентом |
Цинк фосфатные цементы | 96-133 | 3,1-4,5 | 9,3-13,4 | |
Цинк поликар боксилатные цементы | 57-99 | 3,6-6,3 | 4,0-4,7 | 2,1 |
Стеклоионо мерные цементы | 90-140, через 24ч-93-226 | 4,2-5,3 (6-8) | 3,5-6,4 (до 7) | 3,0-5,0 |
Гибридные стеклоиономер ные цементы | 85-126 | 13-24 | 2,5-7,8 | 10-12 без бондагента, 14-20 с бондагентом |
Таблица 17. Свойства фиксирующих стеклоиономерных цементов на примере двух представителей (R.van Noort, 1994)
Свойство | Aqua-Cem (De Trey) | Ketac-Cem (ESPE) | |
Рентгеноконтрастность | Нет | Нет | |
Растворимость в воде (%): | через 7 мин | 0,90 | 1,00 |
через 1ч | 0,46 | 0,40 | |
Растворимость в молочной кислоте(%) | - | 0,57 | |
Прочность на сжатие через 24 ч (МПа) | |||
Прочность на диаметральное растяжение через 24 ч (МПа) | 7,6 | 5,3 | |
Прочность на изгиб через 24 ч (МПа) | 15,2 | 4,1 |
жидкостью, длительное рабочее время (смешивание и внесение цемента занимает в среднем 2,5-3 мин), более высокое соотношение оксидов алюминия и кремния.
Представителями этой группы материалов являются цементы Aqua-Cem (Dentsply), fuji I (GC), Ketac-Bond (ESPE)
Сравнительная характеристика физических и механических свойств различных фиксирующих стоматологических материалов, включая стеклоиономерные цементы, представлена в табл 15 и 16 В табл 17 даны некоторые физико-механические свойства фиксирующих стеклоиономерных цементов на примере их двух представителей
Стеклоиономерные цементы II типа
Реставрационные (восстановительные) стеклоионо-мерные цементы предназначены для восстановления дефектов в зубах. Они обладают более высокой прочностью и более низкой растворимостью по сравнению с представителями остальных групп (табл. 18) Это достигается, в частности, модификациями состава стекла и более высоким соотношением порошок/жидкость (в среднем 3.1). Средние значения начальной прочности на сжатие восстановительных стеклоиономерных цементов — 140-180 МПа. Растворимость в воде наиболее низкая среди всех групп стеклоиономеров — около 0,4 %. Некоторые материалы этой группы нерентгеноконтрастны. Отвердевание длится в среднем от 3 до 7 мин.
Материалы 1-го подтипа предназначены для эстетических реставраций (выполнение кариозных дефектов III и V классов, некариозных поражений). Изменение соотношения между оксидом алюминия и оксидом кремния в сторону оксида кремния улучшает эстетические свойства данных материалов (в частности, их прозрачность), однако снижает прочность, делая невозможным их применение в участках, выдерживающих большие нагрузки (в жевательных зубах), и несколько удлиняет время затвердевания, повышая таким образом чувствительность к потере и попаданию воды.
Стеклоиономеры 2-го подтипа применяются для нагруженных реставраций — постоянных реставраций временных зубов, отсроченного пломбирования постоянных зубов Эти же материалы в силу своих физико-механических свойств могут использоваться для замещения дентина при выполнении "сэндвич"-техники, баз под реставрацию, для герметизации фиссур, а также для реконструк-
ции культи зуба при сильно разрушенной коронке перед протезированием, изготовления коронково-корневых вкладок. Они уступают в эстетических качествах материалам 1-го подтипа, но обладают большей прочностью и более высокой скоростью затвердевания с ранней устойчивостью к влаге.
Стеклоиономерные цементы II типа достаточно прочны и могут протравливаться кислотой при использовании их в качестве базы под реставрацию, если толщина слоя материала составляет не менее 1 мм
К цементам этого типа относятся Chelon-Fil (ESPE), Chemfil Superior и ChemFlex (DentSply), Fuji II и Fuji IX (GC), lonofil (VOCO).
Таблица 18. Сравнительная характеристика некоторых физических и механических свойств пломбировочных стеклоиономерных цементов (по данным производителей материалов)
Адгезия | ||||||
» | (С: | |||||
Название | g'31 | g§ | ев | л | ||
Я m | в 3 ® | Я —J | о | ев | ||
материала, производи | л S 5s S * | Л 1- Я и ее и 1^1 | йВ и s о ^ | 1^ | В S | >> |
тель | 5 я £ ^ о я °< » В s | И ф " —• 3< ik К ев ёШ | 5^ в g afe В я | и ^ 5 § я § h п | § ffi | В ^ S ев дВ " Ьи4 ®S се ^— |
Chelon-Fil | ||||||
(Ketac-Fil) | 15,4 | 12,2 | 0,71 | 4,1 | 3,1 | |
(ESPE) | ||||||
Chemfil | через | через | ||||
Superior (Dentsply | 24ч- 200, через | нет данных | 24 ч - 25, через | 0,1 | ||
De Trey) | 1 нед- 250 | 1нед - 45 | ||||
FuJiIILC | ||||||
формула | 0,07 | 11,3 | 8,2 | |||
(GC) | ||||||
FujiIX GP (GC) | нет данных | 0,02 | 5,9 | 4,4 |
Стеклоиономерные цементы III типа
Подкладочные, или лайнинговые (от англ. lining— подкладка), Стеклоиономерные цементы используются в качестве прокладок под амальгаму и композиционные материалы. Требованиями, предъявляемыми к материалам этого типа, являются более короткое рабочее время и время отвердевания, что снижает общее время реставрации, рентгено-контрастность, образование достаточно тонкой пленки, обеспечивающей сохранение рельефа изолируемой поверхности. Соотношение порошок/жидкость в материалах этой группы колеблется от 1,5:1 до 4:1 в зависимости от требуемой прочности (применения в качестве изолирующей подкладки или базы под реставрацию). Прочность подкладочных материалов на сжатие в среднем составляет 80—100 МПа. Среднее время отвердевания — 4-5 мин.
Относительно цементов этой группы особенно остро стоит вопрос о возможности их протравливания. Даже если производитель допускает возможность протравливания данного стеклоиономерного цемента, его можно осуществлять только при условии, что толщина слоя материала составляет не менее 1 мм.
Подкладочными являются цементы Aqua Cenit, Aqua lonobond, lonobond (VOCO), Baseline (DentSply).
Некоторые авторы (B.G.Dale, K.W.Aschheim, 1993) разделяют данную группу стеклоиномерных цементов на подгруппы. К 1-й относятся цементы, не обладающие высокой прочностью, но имеющие оптимальную биосовместимость за счет низкой кислотности и высокого содержания оксида цинка (D.С.Smith , 1990). Они могут применяться в глубоких участках кариозных полостей, что, однако, не исключает необходимость применения кальцийсодержащей
прокладки. Вторая подгруппа включает более прочные материалы, которые могут использоваться как база под композитные материалы при реставрации, частично восстанавливая утраченную часть зуба. Они обычно замешиваются более плотно и имеют определенные добавки. Прочность достигается, в частности, большей кислотностью, которая снижает толерантность материала к пульпе.
Иногда выделяют 3-ю подгруппу — фотоотвердеваю-щие цементы, хотя это и не соответствует принципу классификации по назначению материалов.
Стеклоиономерные цементы для обтурации корневых каналов
Стеклоиономерные цементы могут применяться для пломбирования корневых каналов с использованием гуттаперчи. Хорошая фиксация материала к дентину стенок канала предотвращает микроподтекание и разгерметизацию канала Материалы этого типа имеют удлиненное рабочее время (до 15-20 мин) и время отвердевания (до 1 ч), которое обеспечивает возможность качественного проведения обтурации и распломбирования канала в случае обнаружения неудовлетворительного результата после рентгенологического исследования Применение этих цементов в качестве самостоятельных обтурирующих материалов без гуттаперчевых штифтов не рекомендуется ввиду чрезвычайной сложности распломбирования канала после отвердевания материала
Представителями этой группы являются стеклоиономер-ные цементы Ketac-EndoAplicap (ESPE), Endion (VOCO), Endo-Jen (Jendentai) Все они представляют собой водные системы
Металлсодержащие
Стеклоиономерные
цементы
В 1980-х годах начались разработки стеклоиономерных цементов, в состав порошка которых входили металлы, — чаще всего порошок серебра или частицы амальгамового сплава, содержащие серебро и олово (во многих источниках эти материалы назывались керметами) (J W.McLean, О Gasser, 1985; J W McLean, 1990). Побудительным моментом к таким разработкам послужило повышение в 80-е годы настороженности к серебряной амальгаме, вызвавшее попытки создать материал подобного состава, но без содержания ртути Введение частиц амальгамового сплава (серебро-олово) в состав порошка стеклоиономерного цемента (miracle mixture), однако, не привело к созданию материала, сравнимого по прочностным свойствам с амальгамой Возможно, причиной этого была недостаточная связь между серебром и матрицей цемента. Замена сплава серебро-олово сплавом серебро-палладий улучшила эту связь за счет образования хелатных соединений между полиакриловой кислотой и оксидом палладия, тонкая пленка которого формировалась на поверхности частичек Именно эти материалы первыми получили название "керметы" (ceramic-metal mixture), распространившееся затем на все Стеклоиономерные цементы, модифицированные добавлением металла
Введение частиц серебра повышает твердость цемента (металлические частицы поглощают большую часть нагрузки), повышает устойчивость к истиранию, улучшает прочностные характеристики материала, его плотность, снижает пористость, обеспечивает рентгеноконтраст-ность, несколько повышает (до 15 х 10'6 / °С) коэффициент температурного расширения (J J.Simmons, 1983;
J.W.McLean,0. Gasser, 1985;B.K. Moore et al., 1985, T.PCroll, R.W.Phillips, 1986; J.E.McKinney et al., 1988, J.J.Simmons, 1983, 1990). Серебросодержащие цементы имеют также низкий коэффициент трения поверхности. Более короткое время отвердевания снижает чувствительность к влаге и влагопоглощение. По остальным физико-механическим свойствам эти материалы не превосходят традиционные стеклоиономеры.
Первые образцы серебросодержащих цементов имели ряд недостатков: серый цвет, длительное время отвердевания (5-7 мин), возможность пигментации десневых сосочков за счет высвобождения ионов серебра. Последние разработки в значительной степени лишены этих недостатков, обладают более высокой плотностью и износостойкостью, более быстрой реакцией отвердевания (табл. 19).
Порошок серебряных стеклоиономерных цементов может быть двух видов: это либо обычная смесь стекла и серебра (J.J.Simmons, 1983,1990), либо серебро инкорпорировано в стеклянный порошок (J.W.McLean, О.Gasser, 1985). Первый метод обычно не приводит к ощутимому повышению устойчивости к истиранию и не изменяет принципиально прочность материала, но повышает рентгенокон-трастность и изменяет консистенцию материала во время
Таблица 19. Сравнительная характеристика физико-механических свойств двух представителей серебро-содержаших стеклоиономерных цементов
Свойство | Ketac-Silver aplicap/maxicap (ESPE) | Miracle mix (GC) |
Прочность на сжатие (МПа) | ||
Прочность на диаметральное растяжение (МПа) | 14,1 | 7,0 |
Прочность на изгиб (МПа) | 26,9 | 10,6 |
Адгезия к эмали (МПа) | 2,5 | 2,2 |
Адгезия к дентину (МПа) | 3,1 | 0,9 |
Растворимость в воде (%) | 0,25 | 0,4 |
Время замешивания и рабочее время (мин, сек) | 1,20 | 2,05 |
Время отвердевания (мин, сек) | 4,0 | 5,30 |
работы. Размер частиц серебра в порошке — 3-4 мкм. Во втором случае смесь стеклянного порошка и серебра формируется в шарики и шлакуется при 800 °С до слияния стекла и серебра. Шлакованная твердая субстанция измельчается до порошка, частицы округляются раз-малыванием. Добавляется около 5 % Ti-,0 для улучшения эстетических свойств (осветления). Однако при повышении количества серебра в составе цемента уменьшается количество фторалюмосиликатного стекла и, соответственно, снижается выделение фтора.
Соотношение серебра и стекла в порошке серебросодержащих цементов в среднем составляет 17,5 : 82,5 об%. Жидкость не отличается принципиально от жидкости традиционных стеклоиономеров и представляет собой водный раствор кополимера акриловой и/или малеиновой кислот (37 %) и винной кислоты (9%).
Устойчивость серебросодержащих стеклоиономерных цементов к истиранию позволяет использовать их как постоянные пломбировочные материалы в небольших полостях I класса без значительной окклюзионной нагрузки. По показаниям они относятся к материалам 2-го подтипа II типа (для нагруженных реставраций).
К материалам этой группы относятся стеклоиономерные цементы Argion и Argion Molar (VOCO), Chelon Silver, Chelon Silver Aplicap/Maxicap (ESPE), Ketac Silver Aplicap/Maxicap (ESPE), Miracle mix (GC), Alpha Silver (DMG).
Правила работы со
стеклоиономерными
цементами
Препарирование кариозной полости. При использовании стеклоиономерных цементов допустимо минимальное препарирование твердых тканей зуба. Необходимость создания ретенционных пунктов отпадает ввиду хорошей адгезии материала к тканям зуба. Требуется удаление только пораженных кариесом эмали и дентина без профилактического иссечения интактных тканей по методике Блэка, учитывая кари-есстатические свойства материала. Однако в случаях, когда реставрации предстоит выдерживать большие нагрузки, препарирование должно быть более полным, приближаясь к классическому. Граница отпрепарированной полости (будущий край пломбы) не должна находиться в участке контакта с зубом-антагонистом . Необходимо также следить за тем, чтобы из стеклоиономерного цемента не выполнялся контактный пункт между зубами, поскольку высокая стираемость этого материала может привести к его скорому нарушению. Эмалевый край обрабатыватся (финируется), но не скашивается.
Нередко пришеечные дефекты (клиновидные дефекты, эрозии) не требуют машинного препарирования — в таком случае достаточно очистки, промывания и кондиционирования поверхности. Очистка производится с помощью смеси пемзы и воды, помещенной в мягкую резиновую чашечку или нанесенной на щетку для удаления поверхностных отложений (бляшки, пелликулы), закрывающих дентин-ную поверхность.
При выборе оттенка материала нужно учитывать, что при затвердевании цемент слегка темнеет: это объясняется повышением его прозрачности после полной полимеризации. На опаковость материала влияет абсорбция воды - понижая ее, что также приводит к потемнению реставрации после контакта с влагой.
Изоляция пульпы. При непосредственном контакте цемента с пульпой образуется локализованная зона ее некроза, которая ингибирует кальцификационную репарацию. Поэтому при глубоких полостях следует применять прокладку из материала, содержащего гидроксид кальция. Изоляция пульпы необязательна при хроническом течении кариеса с образованием плотного склерозированного дентина.
Поверхностное кондиционирование. Поскольку стеклоиономерный цемент химически связывается с твердыми тканями зуба, необходимо предварительное очищение их поверхности для обеспечения более прочной связи. С этой целью производится кондиционирование поверхности зуба — обработка очищающими веществами, которые удаляют загрязнение и обеспечивают гладкую, чистую поверхность (Duke E.S. etal., 1985). В качестве кондиционера использовались различные вещества, в частности, лимонная кислота, ЭДТА (этилендиаминтетрауксусная кислота). Лучшим кондиционером признана полиакриловая кислота в низких концентрациях (10-40 %, чаще — 10-25 %) (табл. 20). Подобие химического состава кондиционера и жидкости стеклоиономерного цемента привели к появлению материала, в котором жидкость может выполнять обе эти функции: вначале она применяется для кондиционирования поверхности, затем — как жидкость для замешивания материала (цемент ChemFlex, Dentsply). Обработка кондиционером обычно осуществляется в те-
Таблица 20. Влияние обработки поверхности тканей зуба различными веществами на прочность связи стеклоиономерного цемента с твердыми тканями зуба (van Noort R., 1994)
Ткань зуба | Обработка поверхности | Прочность связи (МПа) |
Эмаль | без обработки | 3,2 |
лимонной кислотой | 5,6 | |
полиакриловой кислотой | 7,1 | |
Дентин | без обработки | 3,1 |
лимонной кислотой | 3,7 | |
полиакриловой кислотой | 6,8 |
Правила работы со стеклоиономерными цементами
чение 10-30 сек, затем полость промывается водой и высушивается..
Особенно важно проведение кондиционирования в случаях, когда не производится препарирование дентина — при этом необходимо удаление поверхностных отложений с непрепарированной ткани. Важно не переходить грань между кондиционированием и протравливанием, сопровождающимся деминерализацией твердых тканей, - при этом ухудшается связь цемента со спавшимися коллагеновыми волокнами, происходит пересушивание дентина, возникают препятствия для полноценного ионного обмена.
Считается, что в процессе кондиционирования удаляется смазанный слой, но остаются "пробки" в дентинных трубочках (PowisD.R.etal., 1982; Duke E.S.etal., 1985;Hinoura E. et al., 1986). У пациентов с повышенной чувствительностью шеек зубов (свидетельствующей о том, что дентинные канальцы не склерозированы) возможно случайное открытие дентинных канальцев, поэтому кондиционирование в подобных случаях не проводится или проводится в течение сокращенного времени.
Щадящее высушивание твердых тканей зуба. Ввиду высокой чувствительности стеклоиономерных цементов к обезвоживанию не следует пересушивать ткани зуба воздушной струёй из компрессора; высушивание лучше осуществлять ватным шариком, удаляя им только избыток влаги. Полость должна быть относительно сухая, но не пересушенная.
Тщательность дозировки порошка и жидкости. Стеклоиономерные цементы чрезвычайно чувствительны к нарушению соотношения смешиваемых компонентов (Stokes A.N., 1980). Тенденция к снижению содержания порошка в смеси в целях получения жидкой пасты приводит к замедлению отвердевания и ослаблению цемента, что повышает его растворимость (Crisp S. et al., 1976; Wong T.C.C.,BryantR.W., 1985) (рис. 16,17). Передозировка порошка может привести к тому, что затвердевающий цемент будет забирать на себя влагу из пульповой ткани, вызывая гиперчувствительность(см. рис.13). Поэтому необходимо
соблюдать все правила дозировки материала: перед забором порошка следует несколько раз встряхнуть емкость. в которой он находится, для его разрыхления; отмеривать порошок плоскими (без горки) ложечками, не утрамбовы-