Повышение соотношения порошок/жидкость - ---
Рис. 16. Изменение прочности на сжатие и времени отвердевания стеклоиономерного цемента в зависимости от соотношения его
порошка и жидкости
Правила работы со стеклоионошерными цементами
вая его; флакон с жидкостью держать достаточно высоко, чтобы капля падала свободно; следить за тем, чтобы размер капель жидкости был одинаков и они не содержали пузырьков воздуха. Жидкость должна быть комнатной температуры. Некоторые материалы допускают варьирование консистенции и времени отвердевания изменением соотношения порошка и жидкости — эти возможности и рекомендуемые соотношения всегда указываются в прилагаемых инструкциях.
Несмотря на то, что стеклоиономерные цементы являются гидрофильными материалами, требуется тщательная изоляция операционного поля, поскольку кровь и слюна могут не только нарушить процесс отвердевания, но и загрязнить реставрацию, снизить адгезию к тканям зуба и эстетические свойства.
Смешивание охлажденных порошка и жидкости на охлажденной пластинке можно практиковать в том случае, если необходимо удлинить время схватывания цемента. Так, при смешивании материала на дощечке температуры 3 ° С рабочее время удлиняется до 9 мин. Однако это приводит к незначительному ухудшению свойств цемента — снижению прочности на сжатие и модуля эластичности (A.N.Stokes, 1980).
Перемешивание материала производится на гладкой стороне сухой стеклянной пластинки или бумажной поверхности при температуре 18-23 ° С (при температуре выше 25 ° С пластинку следует охладить) в течение 30-60 сек (у цементов различных производителей); у большинства материалов это время не превышает 45 сек. Как правило, отмерянная порция порошка разделяется на две равные части. Первая из них быстро вносится в жидкость и замешивается в течение 20 сек до получения однородной массы, затем к ней прибавляется вторая порция и в оставшееся время (около 20 сек) замешивается весь материал до получения однородной массы с глянцевой поверхностью. Предпочтительно замешивание производить пластмассовым инструментом. Если применяется металлический шпатель, необходимо сразу же после замешивания его очис-
тить, поскольку стеклоиономерный цемент приклеивается к металлу.
При использовании инкапсулированных цементов капсулу следует встряхнуть перед активацией. Смешивание производится в высокоскоростном амальгамосмесителе с частотой 4000 ротаций в минуту обычно в течение
10 сек.
Для внесения материала также целесообразно использовать пластмассовые инструменты или капсулы-насадки с поршневыми диспенсерами ввиду прилипания цемента к металлическим инструментам.
Адгезия стеклоиономера к структуре зуба (так же, как и к металлу) возникает только в начальной фазе реакции, непосредственно следующей за перемешиванием порошка и жидкости. Это соответствует границе фазы растворения и фазы загустевания: смесь до этого момента имеет характерный блестящий вид. Именно в этот период необходимо внести материал в полость и обеспечить его контакт с тканями зуба. Когда начинается фаза застывания, поверхность тускнеет, исчезает прозрачность, что демонстрирует переход из жидкого состояния в твердое. Работа с материалом в этой фазе может привести к нарушению его формирующейся структуры и адгезии к тканям зуба.
Рабочее время для большинства стеклоиономерных цементов при 23 ° С составляет от 1,5 (Chemfil Superior, Fuji II) до 3-4 мин (Aqua lonofil, Aqua Meron), в среднем -- около 2 мин. В это время происходит освобождение и миграция ионов, что соответствует первой фазе реакции отвердевания — фазе растворения.
Время затвердевания фиксирующих цементов в среднем — 4-7 мин, прокладочных — 4-5 мин, восстановительных — 3-4 мин. В это время происходит осаждение ионов металлов на цепях поликислот, что соответствует фазе загустевания или начального отвердевания.
Предотвращение попадания влаги во время застывания цемента необходимо ввиду опасности вымывания экстрагируемых ионов металлов. Оно может осуществляться с помощью ватных валиков, слюноотсоса или коффердама.
Правила работы со стеклоиономерными цементзми
Предварительная обработка пломбы (для материалов II типа). В первое посещение производится только удаление излишков материала острым ручным режущим инструментом или ротационными инструментами (белыми камнями или гибкими дисками, смазанными вазелином). Инструмент следует двигать по направлению от пломбы к зубу, а не наоборот, учитывая незрелость цемента и еще слабую его адгезию к тканям зуба. Применение ручных режущих инструментов рассматривается разными авторами неоднозначно: некоторые из них (G.J.Pearson, 1983;
G.J.Pearson, Knibbs, 1987) считают преимуществом стек-лоиономерных цементов перед композитными материалами возможность удаления излишков пломбы с применением ручных инструментов, другие полагают, что это может повредить краевую адаптацию. Использование водного спрея в этой фазе не рекомендуется, пока материал не затвердеет окончательно и не станет невосприимчивым к влаге.
Более ранние исследования продемонстрировали неудовлетворительное качество поверхности реставрации из стеклоиономерного цемента, если ее окончательная полировка проводилась через 8 мин после отвердевания. Однако в настоящее время разработаны упрочненные цементы с ускоренным отвердеванием, производители которых рекомендуют осуществлять окончательную обработку в первое посещение (в частности, это относится к некоторым серебросодержащим цементам). В этом случае защитный слой ненаполненного композитного материала (без его полимеризации) наносится на поверхность цемента сразу после внесения в полость до момента его отвердевания (не менее чем на 5 мин) для предотвращения попадания влаги. После отвердевания производится окончательная шлифовка и полировка под струёй воды во избежание дегидратации и перегрева.
Изоляция открытой поверхности пломбы или края зафиксированной коронки во избежание гидратации и дегидратации проводится в течение 24 ч (M.S.A.Earl et al., 1985;
K.S.Kim, 1988; G.Mount, 1988; M.S.A.Earl et al., 1989;
M.Hotta et al., 1992). В качестве изолирующего материала (варниша — от англ. varnish — лак, глянец, покрывать лаком) применялись специальные лаки, ненаполненные само- или светоотвердеваемые смолы, нитроцеллюлоза, метилметакрилат, амидная резина, полиуретановые материалы. Наиболее эффективным признано использование фотоотвердеваемых композитных бондинговых систем (M.S.A.Earl et al., 1985, 1989). Однако недостатком активируемых светом эмалевых адгезивов является образование небольших выступов, особенно в поддесневой части, вследствие затекания жидкого материала. Может также возникнуть проблема кислородной ингибиции смолы, поскольку используется тонкий ее слой. Для предотвращения образования слоя, ингибированного кислородом, поверхность адгезива перед полимеризацией можно изолировать от воздуха с помощью матрицы либо защитного геля или глицерина.
Хорошие результаты получены при изоляции стеклоиономерного цемента фиссурным герметиком (F.Ciarcia-Godoy, 1986; E.Cho, 1995). Не рекомендуется применять с этой целью вазелин — он не обладает необходимыми изолирующими свойствами, а в отдельных случаях даже оказывает неблагоприятное влияние на свойства отвердевающего материала — возможно, блокируя образование мостиковых связей солей металлов путем взаимодействия с неполярными частями полиакриловых полимеров.
Классические изолирующие лаки представляют собой растворы натурального или синтетического полимера (пластмассы, смолы), растворимого в органическом растворителе (эфир, ацетон, хлороформ). Защита должна действовать по крайней мере в течение 1ч — до получения свойств, позволяющих материалу достигнуть полного отвердевания.
Некоторые исследователи (G.W.Mount, 1990) рекомендуют покрывать стеклоиономер фотоотвердеваемой бонд-системой сразу после исчезновения характерного для первой фазы отвердевания блеска поверхности пломбы, еще в процессе его отвердевания. Но этот слой не полимеризует-ся, его функция — предохранить поверхность реставра-
Правила работы со стекяоионоыерными цементами
ции от попадания влаги во время отвердевания. После удаления излишков материала накладывается второй слои ад-гезива и оба слоя полимеризуются.
Окончательная полировка пломбы должна производиться после полного созревания цемента (через 24 ч) в присутствии воды во избежание дегидратации. Используются алмазные головки, абразивные диски, резиновые профилактические чашечки с полировочной пастой. После обработки реставрация должна быть опять изолирована от влаги с помощью лака.
Протравливание стеклом оном ерных цементов.При использовании «сэндвич»-техники (закрытого варианта), предполагающей замещение утраченного дентина стек-лоиономерным цементом, с помещенным на него композиционным материалом — эмали зуба, протравливание стек-лоиономерного цемента обеспечивает его лучшую связь с композитом за счет микроретенции: оно избирательно удаляет цементную матрицу, образуя шероховатую поверхность, аналогичную протравленной эмали (K.Honoura et al., 1987). Однако при этом могут возникнуть следующие проблемы. Протравливание цемента фосфорной кислотой нередко приводит к его растрескиванию. Передержка протравки чревата настолько глубоким проникновением кислоты в материал, что ее невозможно вымыть водой. Это может привести к гиперчувствительности и реакции пульпы. Кроме того, если восстановление по принципу «сэнд-вич»-техники производится одномоментно, композиционный материал при полимеризационной усадке может оторвать еще незрелый цемент от дентина, нарушив герметичность пломбы. Учитывая эти факторы, рекомендуется производить протравливание не дольше 20 сек с использованием вязких гелей в шприцах (протравка наносится на 20 сек на эмаль, затем — на всю оставшуюся поверхность, включая стеклоиономер, еще на 20 сек). Отрыва стеклоио-номера от дентина из-за усадки композитного материала можно избежать, пользуясь отсроченной методикой пломбирования (нанесения слоя композиционного материала после созревания цемента — через 1 сут) или не протрав-
ливая цемент (и, таким образом, не создавая прочной связи между композитом и стеклоиономером) (K.Naricawa B.Fujii, 1994).
Для обеспечения лучшего связывания со стеклоионо-мерными цементами предпочтительней использовать композиты с низкой вязкостью.
В настоящее время выпускаются также цементы, не требующие протравки для достижения связывания с композитом.
Обсуждается вопрос о возможности химической связи между стеклоиономерным цементом и композитом; некоторые отдельные адгезивные системы обладают таким свойством относительно отдельных стеклоиономеров.
Недостатки стекло-иономерных цементов химического отвердевания
Традиционные стеклоиономерные цементы имеют целый ряд свойств, значительно затрудняющих работу с ними и ограничивающих их использование. К ним относятся следующие свойства:
- длительное время окончательного отвердевания при относительно коротком рабочем времени;
- сохранение первоначально низкого значения рН в течение длительного времени, что может неблагоприятно влиять на пульпу;
- чувствительность к недостатку и избытку влаги во все периоды отвердевания до полного созревания цемента, высокая водорастворимость в течение первых суток,
- появление микротрещин при пересушивании;
- возможность задержки протравочной кислоты при пересушивании — образования так называемой кислотной мины, способной пролонгированно действовать на пульпу;
- возможность повышенной чувствительности зуба после пломбирования. Причиной этого осложнения обычно является дегидратация дентина из-за значительного изменения рН при быстром затвердевании цемента, а также из-за высокой концентрации свободных ионов. Чувствительность зубов после пломбирования снижается при увеличении длительности стадии гелеобразования. Для пломбирования зубов, крайне чувствительных к воздуху, что свидетельствует об открытии дентинных канальцев, необходимо использовать более мягкие материалы (поликар-боксилатные цементы, полуводные стеклоиономеры). Ги-перчувствительность зубов чаще наблюдается при использовании фиксирующих цементов, чем подкладочных;
- непостоянные адгезивные свойства. Снижение адге-зии может происходить вследствие просачивания жидкости из дентинных канальцев, особенно в случае, когда перед помещением цемента в полость дентин был обработан очистительными средствами или растворами кислот;
- хрупкость, низкая прочность (около 40 % от прочности композиционного материала), высокая истираемость;
- недостаточная эстетичность, низкая прозрачность, трудность устранения оптической границы между пломбой и тканями зуба, неудовлетворительная полируемость,
- возможность наличия токсических ионов. Описанные выше свойства традиционных стеклоиономер-ных цементов оставались причиной активной работы в целях устранения указанных их недостатков при сохранении положительных качеств. Результатом этой работы стало изобретение гибридных стеклоиономерных цементов
Гибридные стеклоиотюмерные цементы
В 1988 г. был разработан новый класс материалов — стеклоиономерные цементы двойного отвердевания, получившие название гибридных стеклоиономерных цементов или стеклоиономерных цементов, модифицированных полимером (A.D.Wilson, 1990: A.LM.Anstice, IW.Nicholson, 1992). Первым из них был светоотвердеваемый стеклоино-мерный подкладочный материал Vitrebond (ЗМ).
Состав гибридных стекдоиономерных цементов. Порошок цемента новых разработок представляет собой, как и у традиционных стеклоиономеров, рентгеноконтрас-тное фторалюмосиликатное стекло, иногда с добавлением высушенного кополимеризата, как в безводных стеклоиономерных системах.
Жидкость в основном является раствором кополимера кислот, однако концы молекул поликислот модифицированы присоединением к ним некоторого количества ненасыщенных метакрилатных групп, как у диметакрилатов композиционных материалов. Эти модифицированные радикалы на концах молекул позволяют им соединяться между собой при воздействии света. В жидкости также содержится водный раствор гидроксиэтилметакрилата (НЕМА) (моно- и олигомеры светового отвердевания заменили мономеры композита, являясь соединяющим звеном между гидрофильной стеклоиономерной и гидрофобной композитной матрицами), винная кислота и фотоинициатор (типа камфарохинона), необходимый для светового отвердевания. Жидкость фотоактивна, поэтому должна сохраняться в темной бутылочке или в капсуле.
Реакция отвердевания. При смешивании порошка и жидкости происходит параллельно две реакции (рис. 18). Одна из них повторяет классическую реакцию
отвердевания традиционного стеклоиономерного цемента путем сшивания молекул поликислот ионами металлов с выщелачиванием ионов металла и фтора из стеклянных частичек , выделением фтора и фиксацией к твердым тканям зуба. Однако стеклоиономерная реакция в этих материалах более медленная — время самостоятельного отвердевания цемента составляет 15-20 мин, что оЬеспечи-вает более длительное рабочее время.
Сразу после засвечивания фотополимеризатором происходит полимеризация свободных радикалов метакрильных групп полимера и НЕМА при участии активированной светом фотоинициирующей системы. Таким образом, сразу после засвечивания формируется жесткая структура материала, в которой затем происходит стеклоиономерная реакция.
Структура затвердевшего материала представляет собой структуру традиционного отвердевшего стеклоиономерного цемента с дополнительной поперечной сшивкой цепочек кополимера за счет ненасыщенных метакрильных групп. Кроме того, между карбоксильными группами поликислоты и гидроксильными группами полимера, образовавшегося из НЕМА, формируются водородные связи, что еще сильнее упрочняет структуру материала.
Рис. 18. Механизм отвердевания гибридного стеклоиономерного цемента двойного отвердевания; А — концы молекул поликислот, модифицированные метакрилатными группами
Гибридные стеклоиономерные цементы
Однако при работе с гибридными стеклоиономерами возникает еще одна проблема: в глубоких участках, не доступных для проникновения света фотополимеризатора, где отвердевание происходит только за счет стеклоиономерной реакции, прочность материала ниже. Кроме того, остается определенное количество непрореагировавших метакриль-ных групп. Во избежание этого желательно использовать послойную технику нанесения стеклоиономерного цемента, что несколько усложняет работу с ним.
Решением проблемы стала разработка гибридных стек-лоиономерных цементов тройного отвердевания (материал Vitremer (3M, 1994 г.)). Порошок этого материала содержит кроме фторалюмосиликатного стекла, пигментов и активаторов, необходимых для фотополимеризации, инкапсулированный катализатор (микрокапсулы с патентованной системой водоактивированных редокс-катализаторов — персульфатом калия и аскорбиновой кислотой). При за-мешивании материала микрокапсулы разрушаются и катализируют реакцию связывания метакрильных групп в участках, недоступных для проникновения света фотополимеризатора.
Таким образом, этот класс гибридных стеклоиономеров имеет три механизма отвердевания (рис. 19):
— фотоинициированная метакрилатная полимеризация свободных радикалав, происходящая при освещении смеси порошка и жидкости в доступных для света участках и обеспечивающая быструю реакцию с образованием прочной структуры и удобство в использовании;
— кислотно-основная стеклоиоиномерная реакция с выделением фтора и ионообменом с тканями зуба, происходящая при смешивании порошка и жидкости и придающая материалу характерные стеклоиономерные свойства;
— самополимеризация свободных метакрильных радикалов без воздействия света, происходящая при смешивании порошка и жидкости и обеспечивающая полноценное отвердевали! в участках, не доступных для проникновения света, и, таким образом, устраняющая необходимость послойного нанесения.
Позже были созданы гибридные стеклоиономерные цементы для фиксации коронок, мостовидных протезов, вкладок, накладок, штифтов и ортодонтических конструкций, которые отвердевали без воздействия света, —двойным механизмом, заключающемся в отвердевании по принципу стеклоиономерной реакции и по типу композиционного материала химического отвердевания. К этим материалам относятся Vitremer Luting Cement (3M), Fuji Plus (GC), Advance (Dentsply/Caulk). Vitremer используется без адгезивной системы, сила связи его с дентином составляет 14 МПа, Advance применялся с адгезивной системой Prime&Bond 2.1, Fuji Plus — после кондиционирования. Сила связи последних двух материалов с дентином составляет 15 МПа. Применение описанных цементов проблематично для фиксации полных керамических
Рис. 19. Тройной механизм отвердевания гибридного стеклоиономерного цемента
Гибридные стекпоиочомерные цемечты
реставраций из-за отсроченного их расширения, способного вызвать растрескивание керамики. Наиболее высокая прочность на сжатие у Fuji Plus, на диаметральное растяжение — у Advance, наиболее низкий модуль изгиба у Vitremer.
Свойства гибридных стекдоиономерных цемен-тов. Новые материалы значительно прочнее самоотвердевающих за счет упрочнения пластмассовой матрицей, они не растрескиваются при пересушивании, их внутренняя прочность возросла почти на 300 %, приближаясь к прочности микронаполненных композитных материалов (R.S Mathis, J.L.Ferrocane, 1989). Фотоотвердеваемые цементы имеют меньшую инициальную кислотность после замешивания, что снижает их раздражающее действие на пульпу (J.L.Brouillet, G F.Koubi, 1994). Наличие пластмассовой матрицы обеспечивает лучшие эстетические свойства - прозрачность и полируемость. Быстрая полимеризация делает материал устойчивым к избытку и недостатку влаги Обнаружено, что при высушивании их прочность даже повышается (E.Choetal, 1995) Обработка поверхности материала может производиться немедленно после его отвердевания под воздействием света
Гибридные стеклоиономеры имеют более низкий модуль эластичности, чем композиты. Хотя объемный процент по-лимеризационной усадки у гибридных стеклоиономерных цементов аналогичен этому показателю у композитов, напряжение, возникающее в материале, намного меньше. Поэтому данные материалы предпочтительнее использовать в технике открытого и закрытого «сэндвича».
Во многих материалах этой генерации содержание пластмассы настолько невысокое, что усадка не намного больше, чем у традиционных материалов.
Адгезия гибридных стеклоиономеров к тканям зуба также выше, чем у традиционных, и составляет в среднем 8— 15МПакдентину(К.Ншоигае1а1., 1991; S.Mitra, 1991;
К F.Leinfelder, 1993) за счет двойного механизма связи. К традиционной стеклоиономерной связи прибавляется фиксация пластмассовой матрицы. Кополимерная жидкость, являясь кислотной, после внесения цемента выполняет функции своеобразного кондиционера, разрыхляя, модифицируя смазанный слой дентина, делая его более проницаемым для ионов и низкомолекулярной смолы НЕМА (рис. 20), которая проникает в разрыхленную ткань и одновременно фиксирует на себе метакрильные группы модифицированных поликислот. После засвечивания вся эта структура упрочняется, фиксируясь на поверхности ткани зуба. Таким образом, механизм связывания несколько напоминает принцип действия адгезивных систем третьего поколения.
Для улучшения качества связи с тканями зуба некоторые гибридные стеклоиономеры, особенно густой консистенции (Vitremer TC), были дополнены праймерами. Состав праймера подобен составу жидкости и включает в себя кополимер, НЕМА, этанол, фотоактиватор, однако он является менее вязким. Кислотная природа праймера обеспечивает переосаждение смазанного слоя, что придает ему однородность и защищает ткани зуба от высушива-ния. Таким образом, функция праймера заключается в мо
Рис. 20. Структурная формула гидроксиэтилметакрилата (НЕМА). Молекула НЕМА имеет гидрофобную часть с ненасыщенной двойной связью (а), за счет которой происходит соединение с метакрилатными группами, присутствующими в полимере, и гидрофильную часть (б), проникающую во влажный модифицированный смазанный слой дентина
Гибридные стеклоиономерные цеменгы
дифицировании смазанного слоя и хорошем увлажнении поверхности зуба для улучшения адгезии стеклоиономе-ра Зафиксировавшись в разрыхленных тканях, праймер полимеризуется светом, на него наносится непосредственно материал, метакрильные группы молекул поликислот которого связываются с НЕМА праймера, обеспечивая дополнительную связь за счет пластмассовой матрицы. Кроме того, некоторые исследователи (Т F Watson, 1990, А.М Lin et al, 1992) не исключают возможности проникновения материала в канальцы дентина на основе конфокальных микроскопических исследований
Поскольку между составом жидкости гибридного стек-лоиономерного цемента и матрицы композитных материалов есть химическое сходство, адгезивы композитов могут быть использованы для их связи с отвержденным стек-лоиономерным цементом без необходимости предварительного кислотного протравливания или обработки поверхности материала праимером
К гибридным стеклоиономерным цементам относятся восстановительные материалы Vitremer ТС (ЗМ), Photac-Fil (Quick) (ESPE). FuJi II LC новая формула (ОС), подкладочные цементы Vitrebond (ЗМ), Aqua Cenit и lonoseal (VOCO), fuji Bond LC и fuji Lining LC (GC).
Физико-механические свойства восстановительных и подкладочных гибридных стеклоиономерных цементов представлены в табл 21 на примере материалов компании ЗМ
Таким образом, преимуществами гибридных стеклоиономерных цементов перед самотвердеющими являются
— быстрое отвердевание материала, в случае цементов тройного отвердевания — по всей глубине,
— более высокая прочность, приобретаемая сразу после фотополимеризации, меньшая хрупкость, отсутствие микротрещин,
— более высокая сила связи с тканями зуба,
— устойчивость к влаге и высыханию,
— возможность немедленной полировки,
— удобство в работе (гибкое время работы, одномоментное нанесение, гарантированное отвердевание по всей толщине)
Показания к применению гибридных стеклоионо мерных цементов такие же, как и для традиционных мате риалов Ввиду своих преимуществ материалы данного класса наиболее широко могут использоваться в гериатрии, при кариесе корня В отличие от традиционных стеклоиономерных цементов гибридные материалы могут применяться при открытом варианте "сэндвич"-техники. Техника заключается в том, что при глубоких поддесневых полостях II класса и при невозможности выполнить всю полость композиционным материалом из-за высокой влажности и плохих условий засвечивания участок полости до контактного пункта выполняется из гибридного стеклоио-номерного цемента, желательно тройного отвердевания, а контактный пункт и жевательная поверхность —из композиционного материала Открытым вариант называется
Таблица 21. Физико-механические свойства гибридных стеклоиономерных цементов компании ЗМ
Свойство | Прокладочный цемент Vitrebond | Восстановитель-ный цемент Vitremer ТС (тройного отвердевания) | |
Прочность на сжатие (МПа) | 98,5 | ||
Прочность на диаметраль ное растяжение (МПа) | 18,3 | 40,3 | |
Прочность на изгиб (МПа) | 26,7 | 61,7 | |
Растворимость в воде (%) | 0,05 | ||
Связь с тканями зуба (МПа): | эмалью | 10,3 | |
дентином | с праимером -5,5 (до 8), без праймера -3-4 (до 6) | ||
Рабочее время (мин, сек) | 2,40 | ДоЗ | |
Время самоотвердевания (мин) | 3,5-4,5 | ||
Время отвердевания под действием света (сек) |
Гибридные стекло иономерные цементы
из-за того, что остается открытая поверхность стеклоио-номерного цемента, однако это допустимо для гибридных материалов, учитывая их влагоустойчивость и относительную прочность(рис.21).
До сих пор не прекращаются споры по поводу терминологии в области стеклоиономерных материалов Ввиду превалирования реакции полимеризации метакриловых групп при отвердевании было предложено назвать фото-отвердеваемые стеклоиономерные цементы гибридными стеклоиономерными композитами (Р S.Mathis, L L Ferracane) Утвердились следующие определения, составленные J W.McLean и соавторами (1994) Стеклоиономерные гибридные материалы, отвердеваемые путем кислотно-основной реакции и частично путем полимеризации, предложено именовать стеклоиономерными материалами, модифицированными полимером В свою очередь
Рис. 21. Реставрация полости II класса: а—закрытым методом "сэвдвич"-техники; б-открытым методом "сэндвич-техники
композитные материалы, содержащие любой из важных компонентов стеклоиономерного цемента или оба компонента, но в количествах, недостаточных для стимулирования кислотно-основной реакции, названы композитами, модифицированными поликислотой (полиакриловой кислотой) или фторалюмосиликатным стеклом В Цюрихском университете для таких материалов родилось иное название, которое и приобрело наиболее широкую популярность, — компомеры
Компомеры
Принципиальным отличием компомеров от стеклоио-номерных цементов двойного отвердевания является значительно большее количество полимерной (полиметакри-латной) матрицы и меньшее— поликислотного компонента, что делает невозможным отвердевание материала посредством кислотно-основной стеклоиономерной реакции Так, если смешать порошок и жидкость гибридного стек-лоиономерного цемента, не облучая его, через некоторое время он отвердеет сам посредством стеклоиономерной реакции Его прочность при этом будет ниже максимально возможной за счет отсутствия полимерной матрицы, однако отвердевший материал будет обладать всеми традиционными свойствами стеклоиономерного цемента Компомеры же обычно представляют собой однокомпонентные пастообразные материалы, не отвердевающие самостоятельно без инициации системы полимеризации мета-криловых групп.
Материалы, получившие название "компомеры", появились на стоматологическом рынке в 1993 г (Dyract, DentSply) Компомеры представляют собой композиционные материалы с типичной для композитов реакцией полимеризации. Наполнителем являются частицы фторалю-мосиликатного стекла с различными добавками (например, стронция в материале Dyract АР) Органическая матрица представляет собой мономер, в составе которого находятся как полимеризуемые группы композитных смол, так и кислотные (карбоксильные) группы стеклоиономерного полимера. Например, в компомерном материале F 2000 (ЗМ) матрица химически и функционально близка к НЕМА (гидроксиэтилметакрилату), модифицированному описанным способом, что повышает его гидрофильность по сравнению с композитными материалами Отсюда и
произошло название композитов, модифицированных по-лиакриловой кислотой
Первоначальная реакция отвердевания происходит так же, как у композитов, за счет светоинициируемой полимеризации мономера, содержащего метакриловые группы. После фотополимеризации при контакте с жидкостью полости рта наступает фаза водопоглощения При наличии воды происходит реакция между стеклянными частичками и кислотными группами с выщелачиванием ионов металлов, поперечным сшиванием с их участием цепочек полимера с карбоксильными группами (образуется частичная иономерная структура) и выщелачиванием из стекла ионов фтора. Однако свойства стеклоиономера в компо-мерах выражены незначительно ввиду низкого содержания кислотных групп. Сложности возникают также вследствие гидрофобной природы композиционного материала Являясь новым классом материалов, претендующим на
Таблица 22. Свойства различных компомеров (по данным производителей)
Адгезия к | ||||||
у | дентину (МПа) | |||||
л | я | -.s | ||||
ц | rt ^ | я | о | ^^^ | ||
-? ев s я§| я я S а) о. та li§ sS§& | » Д ll 2 ° s s V h 0 ее Д-N В u | 51? йа §S a —' Sf ю 5 я afe С я | w IS I! | в ва h §1 » о Ф Я ю и | =я о § « я о S s w а\ ^ в я U U | S » &^a 1 s CO ^ rt a| &< W |
Dyract | 324(через | |||||
АР (Dent | 24 часа) -349 (через | г1С i дан | 16,6 | 20,1 | 0,8 | |
Sply) | 1 мес) | |||||
Elan | ||||||
(Kerr) | 10,1 | 15,4 | 20,9 | 1,4 | ||
Hytac | нет | нет | ||||
(ESPE) | дан | 19,89 | дан | |||
ных | ных | |||||
Dyract | ||||||
Cem | нет | нет | нет | |||
(Dent | дан | дан | 5,8 | 10,9 | дан | |
Sply) | ных | ных | ных |
Компомеры
сочетание в себе свойств композитного материала и стек-лоиономерного цемента, компомеры еще довольно мало изучены, и некоторые их свойства, в основном относящиеся к стеклоиономерным качествам, нередко подвергаются сомнению.
Физико-механические свойства компомеров приближаются к таковым микронаполненных композиционных материалов (табл. 22). Они могут использоваться с традиционными адгезивными системами для композитов (особенно при больших полостях и нагрузках) или с собственными адгезивными системами, не требующими протравливания. В некоторых материалах (F 2000) состав адгезивных систем подобен составу праймера гибридных стеклоиономер-ных цементов, но обеспечивает большую модификацию смазанного слоя за счет добавления кислоты.
Широко известными современными компомерами являются Dyract АР и фиксирующий материал Dyract Cem (DentSply), F 2000 (ЗМ), Compoglass и Compoglass Flow (Vivadent), Elan (Kerr), Hytac (ESPE).
Разработки в области компомерных технологий направлены в сторону улучшения их физико-механических свойств (Dyract АР, DentSply), усиления стеклоиономер-ных качеств (F 2000, ЗМ), создания материалов с повышенной текучестью (Compoglass Flow, Vivadent), фиксирующих компомеров с химическим механизмом отвердевания (Dyract Cem, DentSply).
В табл. 23 представлена сравнительная характеристика состава и механизма отвердевания стеклоиономерных материалов, компомеров и композиционных материалов.
В приложениях приведены данные о некоторых стеклоиономерных цементах разных групп, заявленные производителями этих материалов, а также об ассортименте стеклоиономерных материалов и компомеров, выпускаемых различными компаниями.
Приложения
Приложение №1. Продолжение
Приложение 2.
Стеклоиономерные цементы, использующиеся для фиксации
ортопедических и ортодоитических конструкций в полости рта
Приложение 3. Стеклоиономерные цементы, использующиеся в качестве восстановительных материалов
Продолжение приложения 3
Продолжение приложения 3
Продолжение приложения 3
Продолжение приложения 3