Принцип работы терморезисторов

Терморезисторы (термисторы) представляют собой полупроводниковые резисторы с нелинейной вольтамперной характеристикой, отличительной особенностью которых является резко выраженная температурная зависимость электрического сопротивления в диапазоне от -100 до 200 °С.

Наибольшее распространение получили терморезисторы, сопротивление которых уменьшается при увеличении температуры, т. е. терморезисторы с отрицательным температурным коэффициентом сопротивления (ТКС). Вместе с тем, существуют резисторы, сопротивление которых возрастает с ростом температуры. Их обычно называют позисторами. Позисторы изготавливают на основе титанато-бариевой керамики.

Рассмотрим терморезисторы с отрицательным ТКС, изготовляемые из полупроводниковых материалов. Уменьшение сопротивления полупроводника с увеличением температуры может быть обусловлено разными причинами –– увеличением концентрации носителей заряда или увеличением их подвижности, а также фазовыми превращениями.

Первое явление характерно для терморезисторов, изготовленных из германия, кремния, карбида кремния, соединений типа АΙΙΙВV и др. Температурная зависимость удельного сопротивления полупроводника определяется в основном изменением концентрации носителей заряда, так как относительно слабым изменением их подвижности в большинстве случаев можно пренебречь.

При абсолютном нуле температуры все энергетические уровни ва лентной зоны невырожденного полупроводника заняты электронами. В этом случае валентные электроны не могут участвовать в электрическом токе, так как любое их движение связано с увеличением энергии и, следовательно, с переходом на более высокий энергетический уровень, что невозможно в пределах валентной зоны. Поэтому при Т = 0 К полупроводник подобен изолятору, и его проводимость равна нулю. Для перехода электрона в зону проводимости беспримесного полупроводника необходимо передать ему энергию, равную ширине запрещенной зоны ∆Еg. Такую энергию валентные электроны могут получить, если кристалл нагреть до некоторой температуры. Благодаря наличию свободных уровней в зоне проводимости, перешедшие туда электроны смогут двигаться под действием электрического поля. Заметим, что проводимость полупроводника в данном случае будет обусловлена не только наличием электронов в зоне проводимости, но и появлением дырок в валентной зоне.

Вероятность переходов электронов из валентной зоны в зону проводимости, а, следовательно, и число образовавшихся свободных электронов и дырок значительно (по экспоненциальному закону) возрастают с увеличением температуры:

Принцип работы терморезисторов - student2.ru

где ni – концентрация свободных электронов (индекс i указывает на то, что полупроводник собственный; заметим, что в собственном полупроводнике концентрация свободных дырок p = ni);

∆Εg – ширина запрещенной зоны, которая, строго говоря, сама зависит

от температуры;

Т – абсолютная температура;

k – постоянная Больцмана.

Если в полупроводнике имеются примеси, то это приводит к образованию энергетических уровней внутри запрещенной зоны. Примесные атомы даже при относительно низких температурах могут поставлять электроны в зону проводимости (в этом случае примесь называется донорной, а полупроводник - n-типа) или дырки в валентную зону (примесь называется акцепторной, а полупроводник - p-типа), так как требуемая для этого энергия обычно значительно меньше ширины запрещенной зоны. Зависимость концентрации носителей заряда в полупроводнике n-типа от температуры показана на рис. 1.

Большую часть терморезисторов, выпускаемых промышленностью, изготавливают из поликристаллических оксидных полупроводников, в которых преобладает ионная связь. Электропроводность этих материалов отличается от электропроводности рассмотренных выше ковалентных полупроводников. Как правило, полупроводниками являются оксиды переходных металлов, для которых характерно наличие незаполненных электронных оболочек и переменная валентность. При образовании такого оксида в определенных условиях (наличие примесей, отклонение от стехиометрии) в одинаковых кристаллографических положениях оказываются ионы с разными зарядами. Электропроводность оксидных полупроводников объясняется обменом электронами между этими ионами. Так как энергия, необходимая для такого обмена, невелика, все электроны (или дырки), которые могут переходить от одного иона к другому, можно считать свободными носителями заряда, а их концентрацию постоянной при температурах в рабочем для терморезистора диапазоне.

Из-за сильного взаимодействия носителей заряда с ионами подвижность носителей заряда в оксидном полупроводнике оказывается довольно низкой и экспоненциально возрастает с ростом температуры. В результате зависимость сопротивления оксидного полупроводника от температуры оказывается такой же, как у ковалентных полупроводников, но она обусловлена не изменением концентрации свободных носителей заряда, а изменением их подвижности.

В оксидах ванадия V2O4 и V2O3, в отличие от рассмотренных выше полупроводников, причиной значительного (на несколько порядков) изменения их сопротивления является фазовый переход при температурах 68 и -110 °С соответственно. На основе этих оксидов созданы терморезисторы с очень большим температурным коэффициентом сопротивления.

Принцип работы терморезисторов - student2.ru

Схематическое изображение температурной зависимости концентрации электронов в примесном (донорном) и собственном полупроводниках .


Наши рекомендации