Понятие дифференциала функции одной переменной и его геометрический смысл.
Понятие и геометрический смысл дифференциала
Определение. Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.
Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).
Это записывается так: или или же
Геометрический смысл дифференциала. Дифференциал функции y = f(x) равен приращению ординаты касательной S, проведённой к графику этой функции в точке M(x; y), при изменении x (аргумента) на величину (см. рисунок).
Почему дифференциал можно использовать в приближенных вычислениях?
Дифференциал, является главной, линейной относительно частью приращения функции; чем меньше , тем большую долю приращения составляет эта часть. В этом можно убедиться, мысленно передвигая перпендикуляр, опущенный из точки P (см. рисунок) к оси Ox, ближе к началу координат. Поэтому при малых значениях (и при ) приращение функции можно приближенно заменить его главной частью , т.е.
О разных формах записи дифференциала Дифференциал функции в точке x и обозначают или Следовательно, (1) или (2)
поскольку дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной. Замечание. Нужно помнить, что если x – исходное значение аргумента, а - наращенное значение, то производная в выражении дифференциала берётся в исходной точке x ; в формуле (1) этого не видно из записи.Дифференциал функции можно записать в другой форме: (3)
или (4)
30. Свойства дифференциала.
Свойства дифференциала
Дифференциал обладает свойствами, аналогичными свойствам производной:
(С – постоянная величина) (5)
(6) (7)
(8) (9)
Формулы (5) – (9) получаются из соответствующих формул для производной умножением обеих частей каждого равенства на .
Применение дифференциала в приближенных вычислениях
Установленное во втором параграфе приближенное равенство
или (10)
позволяет использовать дифференциал для приближенных вычислений значений функции.
Запишем приближенное равенство более подробно. Так как
а то или
(11)
Абсолютная и относительная погрешности приближенных вычислений
Пользуясь приближенным значением числа, нужно иметь возможность судить о степени его точности. С этой целью вычисляют его абсолютную и относительную погрешности.
Абсолютная погрешность приближенного числа равна абсолютной величине разности между точным числом и его приближенным значением: (12)
Относительной погрешностью приближенного числа называется отношение абсолютной погрешности этого числа к абсолютной величине соответствующего точного числа:
(13) Если точное число неизвестно, то (14)
Иногда, прежде чем применить формулу (11), требуется предварительно преобразовать исходную величину. Как правило, это делается в двух целях. Во-первых, надо добиться, чтобы величина была достаточно малой по сравнению с , так как чем меньше , тем точнее результат приближенного вычисления. Во-вторых, желательно, чтобы величина вычислялась просто.
31. Применение дифференциала к приближенным вычислениям.
Как уже известно, приращение ∆у функции у=ƒ(х) в точке х можно представить в виде ∆у=ƒ'(х)•∆х+α•∆х, где α→0 при ∆х→0, или ∆у=dy+α•∆х. Отбрасывая бесконечно малую α•∆х более высокого порядка, чем ∆х, получаем приближенное равенство ∆у≈dy, (3)
причем это равенство тем точнее, чем меньше ∆х.