Элементы аналитической геометрии в пространстве
Простейшие задачи аналитической геометрии в пространстве. Основные виды уравнений плоскости и прямой в пространстве. Угол между плоскостями. Угол между двумя прямыми. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Понятие о поверхностях второго порядка и их классификации.
Матрицы
Понятие матрицы. Операции над матрицами. Определители второго и третьего порядков и их свойства. Понятие определителя n-го порядка. Ранг матрицы. Обратная матрица. Собственные числа и собственные векторы матрицы. Понятие о квадратичных формах и их преобразовании к каноническому виду.
Системы линейных уравнений и неравенств
Системы линейных уравнений. Правило Крамера. Метод Гаусса. Матричный метод решения систем линейных уравнений. Теорема Кронекера-Капелли.
Системы линейных неравенств. Графический метод решения системы линейных неравенств с двумя переменными. Смешанные системы линейных уравнений и неравенств. Применение элементов линейной алгебры в экономике.
Комплексные числа
Комплексная плоскость. Формы представления комплексных чисел. Действия над комплексными числами. Формулы Эйлера.
Раздел II. Математический анализ и дифференциальные
уравнения
Числовая последовательность и ее предел
Действительные числа. Числовые множества. Числовые последовательности. Бесконечно малые и бесконечно большие последовательности. Предел последовательности. Свойства сходящихся последовательностей. Монотонные последовательности. Экономическая интерпретация числа е.
Функции одной переменной
Функции и отображения, их области определения и значений, способы задания и график функции. Основные элементарные функции. Сложная функция. Предел функции в точке. Основные теоремы о пределах функций. Замечательные пределы. Односторонние пределы. Бесконечные пределы и пределы на бесконечности.
Непрерывные функции одной переменной
Непрерывность функции в точке. Односторонняя непрерывность. Классификация точек разрыва. Непрерывность сложной функции и обратной функции. Непрерывность элементарных функций. Непрерывность функции на множестве. Функции, непрерывные на отрезке, и их свойства.
Производная и дифференциал функции одной переменной
Производная функции. Геометрический, механический и экономический смысл производной. Правила дифференцирования. Производная сложной и обратной функции. Производные основных элементарных функций. Логарифмическая производная. Дифференцируемость функции одной переменной. Дифференциал, его геометрический и экономический смысл. Применение дифференциала в приближенных вычислениях. Примеры применения производной в экономике. Производные высших порядков. Неявные функции.
Основные теоремы о дифференцируемых функциях
Стационарные точки. Теоремы Ферма и Ролля. Теорема Лагранжа и формула конечных приращений. Теорема Коши. Правило Лопиталя.
Приложения дифференциального исчисления
Условие постоянства функций. Условия монотонности функций. Экстремум функции. Необходимое условие экстремума дифференцируемой функции. Наибольшее и наименьшее значение функции. Достаточные условия экстремума. Условия выпуклости и вогнутости. Точки перегиба. Асимптоты. Построение графиков функций.
Предельные показатели в экономике. Эластичность экономических показателей. Максимизация прибыли.
Функции нескольких переменных
Функции нескольких переменных. Множества уровней. Однородные функции. Выпуклые и вогнутые функции. Производственные функции. Линии изоквант и изокост. Предел функции в точке. Непрерывность. Свойства непрерывных функций.
Частные производные. Примеры применения частных производных в экономике. Дифференцируемость функции нескольких переменных. Градиент функции и его свойства. Производная функции по направлению. Неявные функции.
Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточные условия экстремума. Задачи на условный экстремум. Наибольшее и наименьшее значения функции.
Выравнивание эмпирических зависимостей. Метод наименьших квадратов.