Этапы развития математики как науки

В развитии теории и методики развития математических представлений можно выделить исторические этапы становления.

1. Первый этап - эмпирическое развитие методики. Вопросы математического развития детей своими корнями уходят в классическую и народную педагогику. Различные считалки, пословицы, поговорки, загадки, потешки были хорошим материалом в обучении детей счету, позволяли сформировать у ребенка понятия о числах, форме, величине и т.д. Позднее на этом этапе произошло выдвижение идеи о необходимости математического развития детей дошкольного возраста. Выдающиеся мыслители прошлого (Я.А. Коменский, И.Г. Песталоцци, К.Д. Ушинский, Л.Н. Толстой), видные деятели (М. Монтессори, Ф. Фребель) осознавали, что без предварительной математической подготовки детям будет трудно осваивать школьную программу.

2. Второй этап - Начальный этап становления теории и методики математического развития дошкольников. Определение содержания, методов и приемов работы с детьми, дидактических материалов. Исторически этот этап относится к 20-30 годам 20го века. Большую роль сыграли отдельные педагоги-исследователи: Е.И. Тихеева, Ф.Н. Блехер, Л.В. Глаголева и др.), «школ» и направлений сенсорного воспитания (М. Монтесори, Л.АВ. Венгер). С начала 20 века в России начала создаваться научно-обоснованная дидактическая система обучения дошкольников математике. Ее начальный этап - начало 20 века - 40-е годы 20 века. В это время в дореволюционной России методические пособия адресовывались, как правило, одновременно семье и д/с, в них родители и воспитатели знакомились с содержанием обучения математике детей. В 1912 голу выходит пособие В.А. Кемниц «Математика в д/с»: игры, беседы, упражнения, изучение чисел 1-10, действий с ними, форм, величин, измерения, части и целого. До 1939 года в д/с Ленинграда детей обучали счету по методике Л.В. Глаголевой, в которой она рекомендовала опираться на обе господствующие в то время теории: восприятия числа путем счета и путем образа. Она пропагандировала разнообразие методов:

• лабораторный (отработка практических действий с использованием наглядных материалов)

• исследовательский (поиск детьми ситуаций применения знаний, аналогичных изучаемым)

• иллюстративный (закрепление умений в продуктивной деятельности)

• наглядный

• игра.

Кроме того, Глаголева раскрыла приемы формирования представлений о величинах, измерении, делении целого на части.

3. Третий этап - Создание научно обоснованной дидактической системы формирования элементарных математических представлений в дошкольном возрасте: определение содержания, методов и приемов работы с детьми, дидактических материалов. Этот этап продолжался с 50-х годов 20 века. А.М. Леушина изучала теорию и методику развития количественных и числовых представлений у детей в процессе обучения.

4. Четвертый этап - Психолого-педагогические исследования 60-70 годов 20 века. Изучались закономерности становления представлений о числе, развития счетной деятельности, вычислительной деятельности. Обосновывалась необходимостью начинать обучение детей с раннего возраста, с восприятия множеств предметов, с последующим обучением счету, выделению отношений между числами. Разрабатывались дидактические материалы, пособия, игры. Это были исследования психологов: И.А Френкеля, Л.Ф. Яблокова, Н.А. Менчинской, Н.Н. Лежавы, Г.С. Костюка. Педагогов: А.М. Леушиной, Н.Г. Бакст. В 70-80 годы проведены исследования по отдельным проблемам методики (Т.В. Тарунтаева, В.В. Данилова, Г.А. Корнилова, Т.Д. Рихтерман).

5. Пятый этап - современное состояние теории и методики математического развития детей дошкольного возраста. С 80х годов 20 века до настоящего времени. Современное состояние теории и методики развития математических представлений у детей дошкольного возраста сложилось в 80-90 годы и первые годы нового столетия под влиянием развития идей обучения детей математике, а также реорганизации всей системы образования. Уже в 80 годы начали обсуждаться пути совершенствования как содержания, так и методов обучения дошкольников математике. В качестве негативного момента отмечалась ориентировка на выработку у детей предметных действий, в основном связанных со счетом и простейшими вычислениями, без должного уровня их обобщенности. Такой подход не обеспечивал подготовку к усвоению математических понятий в дальнейшем обучении. Специалисты изучали возможности интенсификации и оптимизации обучения. Начались поиски путей обогащения содержания обучения. Решение этих сложных задач осуществлялось по-разному.

Наши рекомендации