Экспериментально установлено, что

Экспериментально установлено, что - student2.ru.

Реакция R реальной (шероховатой) поверхности в отличие от реак­ция идеальной (гладкой) поверхности имеет две составляющие: нор­мальную реакцию Экспериментально установлено, что - student2.ru и силу сцепления Экспериментально установлено, что - student2.ru (или силу трения Экспериментально установлено, что - student2.ru при дви­жении тела).

Угол φсц, образованный реакцией шероховатой поверхности с нормалью к поверхности в предельном состоянии покоя при Экспериментально установлено, что - student2.ru называется углом сцепления (рис. 6.3). Тангенс угла сцепления равен коэффициенту сцепления:

Экспериментально установлено, что - student2.ru ,

или

Экспериментально установлено, что - student2.ru .

Экспериментально установлено, что - student2.ru Экспериментально установлено, что - student2.ru

Рис. 6.3 Рис. 6.4

Угол, тангенс которого равен коэффициенту трения скольжения, называется углом трения.

Угол сцепления можно определить опытным путем. Прибор для определения угла сцепления очень прост. Он представляет собой наклонную плоскость, угол наклона которой α можно изменять (рис. 6.4, а).

Зафиксируем угол наклона α плоскости ОА, при котором помещен­ное на ней тело находится в предельном состоянии покоя и сила сцепления достигает максимального значения. Построим замкнутый треугольник сил, действующих на тело, и определим угол α (рисунок 6.4, б):

Экспериментально установлено, что - student2.ru

т.е. угол наклона плоскости α, при котором тело находится в предельном состоянии покоя, равен углу сцепления φсц.

Значение коэффициента сцепления для соответствующих материалов (тело - плоскость) можно определить по таблице тангенсов углов, так как Экспериментально установлено, что - student2.ru .

Конус с вершиной в точке касания тел, образующая которого составляет угол сцепления с нормалью к поверхностям тел, называется конусом сцепления (рис. 6.5). Поверхность конуса сцепления представляет собой геометрическое место максимальных реакций опорной поверхности. Действительно, максимальная реакция поверхности может занимать различные положения на поверхности этого конуса, зависящие от направления силы Экспериментально установлено, что - student2.ru , стремящейся сдвинуть тело (рис. 6.3). Пространство внутри конуса, представляет собой совокупность возможных положений реакций опорной поверхности в состоянии покоя. Пусть к покоящемуся телу приложены силы (в том числе вес тела), линия действия равнодействующей Экспериментально установлено, что - student2.ru которых лежит внутри конуса сцепления (рис. 6.5). Эти силы не приведут тело в движение, так как сила Экспериментально установлено, что - student2.ru будет уравновешена реакцией поверхности.

Экспериментально установлено, что - student2.ru Экспериментально установлено, что - student2.ru

Рис. 6.5 Рис. 6.6

Рассмотрим равновесие сил, действующих на тяжелый брусок, опирающийся на две шероховатые плоскости (рис. 6.6). В точкахА и Ввозникают реакции опор, линии действия которых не выходят за пределы конусов сцепления. Проведя линии А—I,А—II,В—III и В — IV, составляющие углы сцепления φ1сц, и φ2сц с перпендикулярами к опорным плоскостям, восставленными в точках А и В, получаем границы конусов сцепления. Четырехугольник, образованный этими линиями, внутри которого могут пересекаться линии действия реакций опор А и В, называется областью равновесия.

Брусок АВ находится под действием трех сил: его веса Экспериментально установлено, что - student2.ru и двух реакций опор Экспериментально установлено, что - student2.ru и Экспериментально установлено, что - student2.ru . При равновесии линия действия этих трех сил пересекутся в одной точке.

Так как любая точка площадки klmn может являться точкой пере­сечения линий действия реакций опор Экспериментально установлено, что - student2.ru и Экспериментально установлено, что - student2.ru , то брусок находится в состоянии покоя, если линия действия силы веса бруска пересекает об­ласть равновесия.

В случае если линия действия силы веса проходит через точку k области равновесия, брусок находится в предельном состоянии покоя.

Брусок не может удержаться в указанном на рисунке положении, если линия действия силы веса проходит вне области равновесия. Если на брусок действует несколько задаваемых сил и они приводятся к равнодействующей силе, установленным условиям должна удовлетво­рять эта равнодействующая.

Задача 1. Определить модуль силыЭкспериментально установлено, что - student2.ru, при которой начнется движение блока (рис. 6.7, а). Вес блока Q = 2 кН, высота h = 0,8м, ширина b = 0,6 м. СилаЭкспериментально установлено, что - student2.ru, приложенная в точке В, образует угол 30° с горизонтом. Коэффициент трения между блоком и горизон­тальным полом f = 0,2.

Решение. Движение блока может начаться в двух случаях: а) если начнется скольжение блока по плоскости вправо (рис. 6.7, б)и б) если блок начнет опрокидываться вокруг ребра (рис. 6.7, в).

Рассмотрим первый случай. В этом случае точка приложения реакции пола Экспериментально установлено, что - student2.ru неизвестна. Составим уравнения равновесия — при­равняем суммы проекций всех сил на оси координат (рис. 6.7, б) нулю

Экспериментально установлено, что - student2.ru

Рис. 6.7

Экспериментально установлено, что - student2.ru , Экспериментально установлено, что - student2.ru .

Кроме того, учтем зависимость силы трения от нормального дав­ления

Экспериментально установлено, что - student2.ru .

Определим из данной системы уравнений силу Экспериментально установлено, что - student2.ru . Исключая силы Экспериментально установлено, что - student2.ru и Экспериментально установлено, что - student2.ru , находим

Экспериментально установлено, что - student2.ru кН.

Если величина силы Экспериментально установлено, что - student2.ru станет больше этого значения,то блок нач­нет скользить вправо.

Рассмотрим второй случай. В случае возможного опрокидыва­ния блока вокруг ребра А нормальная реакция Экспериментально установлено, что - student2.ru и сила трения Экспериментально установлено, что - student2.ru будут приложены в точке А (рис. 6.7, в).

Составим три уравнения равновесия и четвертое уравнение-зависимость силы трения от нормального давления:

Экспериментально установлено, что - student2.ru , (6.1)

Экспериментально установлено, что - student2.ru , (6.2)

Экспериментально установлено, что - student2.ru . (7.3)

Экспериментально установлено, что - student2.ru . (6.4)

Для нахождения величины силы Экспериментально установлено, что - student2.ru достаточно найтиее значение из (6.3):

Экспериментально установлено, что - student2.ru кН.

Если модуль силы Экспериментально установлено, что - student2.ru станет больше этого значения, то блок начнет опрокидываться около ребра А.

Уравнения (6.1), (6.2), (6.4) смогут быть использованы для опре­деления нормальной реакции и силы трения.

Сопоставляя значения модуля силы Экспериментально установлено, что - student2.ru в первом и во втором случаях, заключаем, что так как величина силы Экспериментально установлено, что - student2.ru при скольже­нии меньше ее величины при опрокидывании, то при возрастании модуля силы Экспериментально установлено, что - student2.ru от нуля до максимума блок начнетсначала скользить, а не опрокидываться.

2 трение качения

Трение качения возникает в результате деформации катящегося тела и опорной поверхности, которые в действительности не являются абсолютно твердыми. Поэтому контакт между телом и поверхностью происходит по некоторой площадке (рис. 6.8, а). Нормальная реакция смещается относительно центра катка на некоторую величину в сторону движения, которая при выходе тела из равновесия достигает максимума и называется коэффициентом трения качения /к (рис. 6.8, б).

Экспериментально установлено, что - student2.ru

Рис. 6.8

Коэффициент трения качения имеет размерность длины в отличие от безразмерного коэффи­циента трения скольжения. Обычно нормальную реакцию про­водят через центр катка, добавляя при этом к телу пару сил с мо­ментом (рис. 6.9, в), который называют моментом трения качения:

Экспериментально установлено, что - student2.ru .

Для катка, находящегося в покое, составим три уравнения равновесия (рис. 6.8, в):

1. Экспериментально установлено, что - student2.ru .

2. Экспериментально установлено, что - student2.ru .

3. Экспериментально установлено, что - student2.ru .

Экспериментально установлено, что - student2.ru .

Из последнего выражения получим условие качения колеса без скольжения.

Обычно это условие соблюдается. Поэтому для начала каче­ния катка требуется меньшая сила, чем для его скольжения.

Задача 2. Цилиндрический каток диаметра 60 см и весом Q = 3,92 кН приводится в равномерное движение человеком, который давит на рукоятку АО = 1,5 м с постоянной силой Экспериментально установлено, что - student2.ru в направлении АО. Высота точки А над горизонтальной дорогой 1,2 м. Коэффициент трения качения катка равен Экспериментально установлено, что - student2.ru = 0,5 см. Определить величину силы Экспериментально установлено, что - student2.ru , силу трения при качении и нор­мальную составляющею реакции горизонтальной плоскости (рис. 6.9). Коэффициент трения скольжения между катком и дорогой Экспериментально установлено, что - student2.ru = 0,2 .

Решение. Изобразим действующие на каток силы. (рис. 6.9, а).

Составим три уравнения равновесия для уравновешенной плоской произвольной системы сил:

Экспериментально установлено, что - student2.ru , (6.5)

Экспериментально установлено, что - student2.ru , (6.6)

Экспериментально установлено, что - student2.ru . (6.7)

Экспериментально установлено, что - student2.ru

Рис. 6.9

Из (6.7) находим:

Экспериментально установлено, что - student2.ru кН.

Из (6.6)

Экспериментально установлено, что - student2.ru кН.

Из (6.5)

Экспериментально установлено, что - student2.ru кН.

Экспериментально установлено, что - student2.ru кН. Экспериментально установлено, что - student2.ru .

Задача 3. Механическая конструкция (рис. 10.2.1), состоящая из груза весом Q = 15 кH опоры С, барабана весом P = 10 кH,и тормозного устройства, находится в покое, коэффициент сцепления fсц между колодкой и барабаном равен 0,1. Определить значение силы и реакции опор О, А,В, приняв, что a = 300; а = 10 см; в = 20 см.

Решение.

Составление расчётной схемы. Объектом равновесия является составная конструкция, состоящая из груза В, опоры С, барабана и тормозного устройства. Применим принцип освобождаемости от связей по всем связям системы (внешним и внутренним). При этом вместо конструкции получим три свободных тела (груз, барабан и тормозное устройство), находящихся в равновесии под действием системы сил. Опору С можно не принимать во внимание, так как активных сил к ней не приложено. Для каждого объекта равновесия необходимо составить расчетную схему в соответствии с известными правилами, собственно решение задачи начинаем с того объекта, к которому приложено меньшее количество неизвестных.

Экспериментально установлено, что - student2.ru

Рис. 10.2.1

1. Груз В

1.1. Составление расчётной схемы (рис. 10.2.2). Размерами груза В в процессе движения можно пренебречь, то есть считать его материальной точкой. Тогда объектом равновесия является узел В. Активной силой является сила тяжести Q. Применяя принцип освобождаемости от связей, мысленно отбросим связи (нить и идеальную поверхность) и заменим их действие реакциями Экспериментально установлено, что - student2.ru и Экспериментально установлено, что - student2.ru . Направление оси х принимаем по поверхности вниз, ось у – перпендикулярно оси х вверх.

Экспериментально установлено, что - student2.ru

Рис. 10.2.2

1.2. Условие равновесия. Для равновесия системы сходящихся сил, приложенных к твердому телу, необходимо и достаточно, чтобы равнодействующая системы сил равнялась нулю.

Экспериментально установлено, что - student2.ru .

1.3. Составление уравнений равновесия.

Экспериментально установлено, что - student2.ru ; Q ∙ cos 450 - T = 0 (1)

Экспериментально установлено, что - student2.ru ; N1 – Q ∙ sin 450 = 0 (2)

1.4. Определение неизвестных.

Из уравнения (1) Т = Q ∙ cos 450.

Из уравнения (2) N1 = Q ∙ sin 450

2. Барабан

2.1. Составление расчетной схемы (рис. 10.2.3). Объектом равновесия является барабан. Активная сила – сила тяжести Р. Применяя принцип освобождаемости от связей, мысленно отбросим связи (нить и тормозное устройство) и заменим их действие реакциями Т′,N2. Покажем силу сцепления Fсц, которая направлена по касательной к барабану, в сторону, противоположную возможному движению.

Экспериментально установлено, что - student2.ru

Рис. 10.2.3

2.2. Условия равновесия. Для равновесия плоской произвольной системы сил необходимой достаточно, чтобы главный вектор этой системы сил и её главный момент относительно любого центра были равны нулю.

Экспериментально установлено, что - student2.ru .

2.3. Составление уравнений равновесия

Экспериментально установлено, что - student2.ru ; Т′ + Fсц ∙ cosα – N2∙ sinα + ROx = 0; (3)

Экспериментально установлено, что - student2.ru ; N2 ∙ cosα + Fсц ∙ sinα + RОy – P = 0; (4)

Экспериментально установлено, что - student2.ru ; -Т′ ∙ r + Fсц ∙ 1,5 ∙ r = 0.(5)

Сила сцепления Fсцмежду нормальной колодкой и барабаном определяется:

Экспериментально установлено, что - student2.ru .

2.4. Определение искомых величин.

Решая систему уравнений (3 – 5), получим:

Экспериментально установлено, что - student2.ru ; T′ = T; Экспериментально установлено, что - student2.ru ;

ROx = - T ′ – Fсц ∙ cosα + N2∙ sinα;

ROy = - N2 ∙ cosα – Fсц ∙ sinα + P.

Экспериментально установлено, что - student2.ru

Экспериментально установлено, что - student2.ru .

3. Тормозное устройство

3.1. Составление расчётной схемы (рис. 10.2.4). Объект равновесия — шток тормозного устройства. Активная сила Экспериментально установлено, что - student2.ru . Используя принцип освобождаемости от связей, мысленно отбросим связи (барабан и корпус тормозного устройства) и заменим их действие реакциями Экспериментально установлено, что - student2.ru , Экспериментально установлено, что - student2.ru , Экспериментально установлено, что - student2.ru .

Покажем силу сцепления Экспериментально установлено, что - student2.ru , равную по модулю Экспериментально установлено, что - student2.ru и направленную в противоположную сторону. Направление оси хпринимаем по оси штока вниз ось у– перпендикулярно оси х вправо.

3.2. Условия равновесия:

Экспериментально установлено, что - student2.ru .

3.3. Составление уравнений равновесия:

Экспериментально установлено, что - student2.ru ; Экспериментально установлено, что - student2.ru ; (6)

Экспериментально установлено, что - student2.ru ; Экспериментально установлено, что - student2.ru ; (7)

Экспериментально установлено, что - student2.ru ; Экспериментально установлено, что - student2.ru ; (8)

Экспериментально установлено, что - student2.ru

Рис. 10.2.4

3.4. Определение искомых величин, проверка правильности решения и анализ полученных результатов. Решая уравнения (6 – 8), получаем:

Экспериментально установлено, что - student2.ru .

Подставляя числовые значения, получим:

Экспериментально установлено, что - student2.ru .

Экспериментально установлено, что - student2.ru .

Знак минус указывает на то, что реакция RBнаправлена в сторону.

Задача 11.2.1. Цилиндрический каток диаметра 60 см и весом Q = 3,92 кН приводится в равномерное движение человеком, кото­рый давит на рукоятку АО = 1,5 м с постоянной силой Экспериментально установлено, что - student2.ru в на­правлении АО. Высота точки А над горизонтальной дорогой 1,2 м. Коэффициент трения качения катка равен Экспериментально установлено, что - student2.ru = 0,5 см. Определить величину силы Экспериментально установлено, что - student2.ru , силу трения при качении и нор­мальную составляющею реакции горизонтальной плоскости (рис. 11.2.1, а). Коэффициент трения скольжения между катком и доро­гой Экспериментально установлено, что - student2.ru = 0,2.

Экспериментально установлено, что - student2.ru

Рис. 11.2.1

Решение. При равномерном качении катка все силы, дей­ствующие на каток, уравновешиваются. К катку приложены две активные силы: вес катка Экспериментально установлено, что - student2.ru и сила давления человека Экспериментально установлено, что - student2.ru . На ка­ток наложена одна связь — горизонтальная плоскость. Применив закон освобождаемости от связей, отбросим мысленно горизон­тальную плоскость и заменим ее действие реакцией Экспериментально установлено, что - student2.ru . Эта реак­ция приложена в точке С, находящейся на расстоянии Экспериментально установлено, что - student2.ru от вер­тикали, проведенной через центр колеса. Реакция Экспериментально установлено, что - student2.ru направлена по прямой СО, так как согласно теореме о трех непараллельных силах в случае равновесия линии их действия пересекаются в од­ной точке О (рис. 11.2.1, б). Реакцию плоскости Экспериментально установлено, что - student2.ru раскладываем на две составляющие: нормальную составляющую Экспериментально установлено, что - student2.ru , перпендикулярную к плоскости, и касатель­ную составляющую — силу трения при каче­нииЭкспериментально установлено, что - student2.ru , направленную вдоль плоскости.

Рассмотрим равно­весие катка как твер­дого тела, находящего­ся под действием четы­рех сил: Экспериментально установлено, что - student2.ru Экспериментально установлено, что - student2.ru ,Экспериментально установлено, что - student2.ru. Выберем систему декартовых координат. Ось х направим по го­ризонтальной плоскости вправо, ось у — вертикально вверх че­рез центр катка. Составим уравнения равновесия. Обозначив бук­вой а угол между горизонталью (осью х) и рукояткой ОА, по­лучим

Экспериментально установлено, что - student2.ru , (1)

Экспериментально установлено, что - student2.ru , (2)

Экспериментально установлено, что - student2.ru . (3)

В уравнении (3) буквой r обозначен радиус катка.

При составлении суммы моментов сил относительно точки С силаЭкспериментально установлено, что - student2.ru, приложенная в центре катка О, разложена на две состав­ляющие — горизонтальную ( Экспериментально установлено, что - student2.ru ) и вертикальную ( Экспериментально установлено, что - student2.ru ), и использована теорема Вариньона. При этом, как принято всегда делать, при вычислении момента горизонтальной составляющей силы Экспериментально установлено, что - student2.ru мы пренебрегли изменением ее плеча, считая, что оно равно радиусу катка r.

Из уравнения (3) найдем величину искомой силы Экспериментально установлено, что - student2.ru :

Экспериментально установлено, что - student2.ru кН.

Равенство (2) даст

Экспериментально установлено, что - student2.ru кН.

Из уравнения (1) определяем величину силы трения:

Экспериментально установлено, что - student2.ru кН.

Проверим, сопоставляя величины силы трения при качении Экспериментально установлено, что - student2.ru , и силы трения скольжения, будет ли в данном случае чистое каче­ние или же будет иметь место скольжение. Сила трения скольже­ния равна

Экспериментально установлено, что - student2.ru кН.

Таким образом, сила трения скольжения больше силы трения при качении

Экспериментально установлено, что - student2.ru

и каток будет катиться без скольжения.

Задача 11.2.2.Определить силу F, необходимую для равномерного качения катка радиусом r = 30 см и весом G = 300 кН по горизонтальной плоскости (рис. 11.2.2), если коэффициент трения качения fк = 0,5 см, а угол α = 30°.

Экспериментально установлено, что - student2.ru Экспериментально установлено, что - student2.ru

Рис. 11.2.2 Рис. 11.2.3

Решение. Первый вариант. Рассмотрим силы, действующие на каток (рис. 11.2.3). Сопротивление качению учтем за счет сме­щения нормальной реакции на величину fк (первая мо­дель учета сопротивление качению). Составим уравнения для плоской системы сил:

Экспериментально установлено, что - student2.ru

Экспериментально установлено, что - student2.ru

Решив эту систему уравнений, найдем

Экспериментально установлено, что - student2.ru

Экспериментально установлено, что - student2.ru

Экспериментально установлено, что - student2.ru

Рис. 11.2.4

Второй вариант. Рассмотрим рас­четную схему (рис. 11.2.4), учитывая сопро­тивление качению за счет введения мо­мента сопротивления качению:

Экспериментально установлено, что - student2.ru (*)

не смещая нормальную реакцию (вторая модель учета сопротивление качению).

Уравнения равновесия:

Экспериментально установлено, что - student2.ru

Экспериментально установлено, что - student2.ru

Решая эту систему уравнений, с учетом равенства (•), приходим к тем же результатам, что и в первом варианте.

3. Отметим, что для того, чтобы качение катка проис­ходило без проскальзывания, коэффициент трения сколь­жения должен быть достаточно большим, а именно:

Экспериментально установлено, что - student2.ru

и в нашем случае

Экспериментально установлено, что - student2.ru

Задача 11.2.3. Система состоит из двух цилиндров весом G1 = 20 Н, и G2 = 30 Н с одинаковыми радиусами R = 50 см, соединенных од­нородным стержнем веса G3 = 40 Н. Цилиндры могут кататься без проскальзывания, цилиндр 1 — без сопротивления, а цилиндр 2 — с трением качения.

Экспериментально установлено, что - student2.ru

Рис. 11.2.5

Коэффициент трения качения δ = 2 мм. К цилиндру 1 приложена пара с моментом М. К оси цилиндра 2 приложена наклонная сила F = 10 Н (рис. 11.2.5). В каких пределах меняется момент М в условии равновесия системы?

Решение

1. Задаем направление возможного движения при достижении условия предельного равновесия. Пусть за счет достаточно большой, по
сравнению с моментом М, силы F произойдет движение системы влево. Тогда момент трения качения, приложенный к цилиндру 2, будет направлен по часовой стрелке (рис. 11.2.7). Его величину находим
по формуле Мтр = N2 ∙δ.

2. Решаем задачу о равновесии системы двух цилиндров и стержня.
Разбиваем систему на три тела (рис. 11.2.6, 11.2.7, 11.2.8). Внешние связи за­
меняем реакциями Fсц1, N1, Fсц2, N2.

Экспериментально установлено, что - student2.ru Экспериментально установлено, что - student2.ru Экспериментально установлено, что - student2.ru

Рис. 11.2.6 Рис. 11.2.7 Рис. 11.2.8

Реакции Fсц1 и Fсц2 приложены к цилиндрам в точках их касания поверхностей, вызваны силами сцепления (трения) и обеспечивают вращение цилиндров. Реакции внутренних связей — Х1, Y1, Х2, Y2.

При составлении системы семи уравнений с неизвестными Х1, Y1, N1, X2, Y2, N2, M избегаем уравнения, в которые входят неизвестные реакции Fсц1 и Fсц2 .

Составляем уравнения равновесия для цилиндра 1 (рис. 11.2.6):

Экспериментально установлено, что - student2.ru

Экспериментально установлено, что - student2.ru (1)

Уравнения равновесия цилиндра 2 (рис. 11.2.7) имеют вид

Экспериментально установлено, что - student2.ru

Экспериментально установлено, что - student2.ru (2)

Уравнения равновесия стержня АВ (рис. 11.2.8) имеют вид

Экспериментально установлено, что - student2.ru

Экспериментально установлено, что - student2.ru

Экспериментально установлено, что - student2.ru (3)

Из решения системы уравнений (1-3) определяем:

Экспериментально установлено, что - student2.ru (4)

Радиус и коэффициент трения качения переводим в метры R = 0.5 м, δ = 0.002 м. Получаем М = 3.414 Нм. Вычисляем нормальные реакции опор:

N1 = 36.058 Н, N2 = 61.013 Н.

Убеждаемся, что N1 > 0 и N2 > 0, что соответствует наличию опоры. Если реакция опоры равна нулю, то это означает отрыв тела от по­верхности, отрицательной реакции опоры N ≤ 0 в задаче с односто­ронней связью не существует (физически не реализуется).

Экспериментально установлено, что - student2.ru

Рис. 11.2.9

3. Меняем направление возможного движения системы. Пусть за счет действия момента М произойдет движение системы вправо. Мо­мент трения качения направим против часовой стрелки (рис. 11.2.9). Составляя уравнения равновесия для новой системы сил, заметим, что отличие от прежней системы про­является только в знаке М во вто­ром уравнении равновесия (2). Так как Мтр = N2∙8, то новое решение для М будет формально отличаться от (4) только знаком у коэффициента трения δ. Поэтому, не решая (и даже не со­ставляя) системы уравнений равнове­сия типа (1— 3) для нового направления возможного движения, записываем ответ, изменяя знаки у δ в (4):

Экспериментально установлено, что - student2.ru (5)

Точно так же находим нормальные реакции опор: N1 = 35.776 Н, N2 = 61.295 Н. При равновесии системы момент, приложенный к цилиндру 1, изменяется в пределах (в Нм) (В задачах, где допускается проскальзывание, необходимо находить также силы Fcц1 и Fcц2 и проверять условие проскальзывания Fcц1 = Fтp1 < fN1, Fcц2 = Fтp2 < fN2, где f — коэффициент трения скольжения).

3.414 ≤ М ≤ 3.658.

Наши рекомендации