Интегрирование биноминальных дифференциалов.
Определение:Биноминальным дифференциаломназывается выражение
xm(a + bxn)pdx
где m, n, и p – рациональные числа.
Как было доказано академиком Чебышевым П.Л. (1821-1894), интеграл от биноминального дифференциала может быть выражен через элементарные функции только в следующих трех случаях:
1) Если р – целое число, то интеграл рационализируется с помощью подстановки
, где l - общий знаменатель m и n.
2) ли - целое число, то интеграл рационализируется подстановкой
, где s – знаменатель числа р.
3) Если - целое число, то используется подстановка , где s – знаменатель числа р.
Однако, наибольшее практическое значение имеют интегралы от функций, рациональных относительно аргумента и квадратного корня из квадратного трехчлена.
На рассмотрении этих интегралов остановимся более подробно.
11. Нахождение интегралов вида Интеграл этой группы находится с помощью подстановки,
, где S общий знаменатель дробей стоящие в степени.
12. Определенный интеграл.
Если при любых разбиениях отрезка [a, b] таких, что maxDxi® 0 и произвольном выборе точек ei интегральная сумма стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b].
Обозначение :
а – нижний предел, b – верхний предел, х – переменная интегрирования, [a, b] – отрезок интегрирования.
Определение: Если для функции f(x) существует предел то функция называется интегрируемой на отрезке [a, b].
Также верны утверждения:
Теорема: Если функция f(x) непрерывна на отрезке [a, b], то она интегрируема на этом отрезке.
Свойства определенного интеграла.
1)
2)
=
3)
4) Если f(x) £j(x) на отрезке [a, b] a<b, то
13. Формула Ньютона – Лейбница) теорема
Если функция F(x) – какая- либо первообразная от непрерывной функции f(x), то
это выражение известно под названием формулы Ньютона – Лейбница.
Доказательство:
Пусть F(x) – первообразная функции f(x). Тогда в соответствии с приведенной выше теоремой, функция - первообразная функция от f(x). Но т.к. функция может иметь бесконечно много первообразных, которые будут отличаться друг от друга только на какое – то постоянное число С, то
при соответствующем выборе С это равенство справедливо для любого х, т.е. при х = а:
Тогда .
А при х = b:
Заменив переменную t на переменную х, получаем формулу Ньютона – Лейбница:
14. Вычисление площадей плоских фигур.
Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x). Если график расположен ниже оси Ох, т.е. f(x) < 0, то площадь имеет знак “-“, если график расположен выше оси Ох, т.е. f(x) > 0, то площадь имеет знак “+”.
Для нахождения суммарной площади используется формула .
Площадь фигуры, ограниченной некоторыми линиями может быть найдена с помощью определенных интегралов, если известны уравнения этих линий.
16. Вычисление длины дуги кривой.
Длина ломаной линии, которая соответствует дуге, может быть найдена как .Т.е.
Если уравнение кривой задано параметрически, то с учетом правил вычисления производной параметрически заданной функции, получаем
,
где х = x(t) и у = y(t).
17. Несобственные интегралы.
Пусть функция f(x) определена и непрерывна на интервале [a, ¥). Тогда она непрерывна на любом отрезке [a, b].
Определение: Если существует конечный предел , то этот предел называется несобственным интегралом от функции f(x) на интервале [a, ¥).
Обозначение:
Если этот предел существуетиконечен, то говорят, что несобственный интеграл сходится.
Если предел не существует или бесконечен, то несобственный интеграл расходится.
Аналогичные рассуждения можно привести для несобственных интегралов вида:
Конечно, эти утверждения справедливы, если входящие в них интегралы существуют.
Пример.
не существует.
Несобственный интеграл расходится.
Вычисление объемов тел.
Вычисление объема тела по известным площадям его параллельных сечений.
Пусть имеется тело объема V. Площадь любого поперечного сечения тела Q, известна как непрерывная функция Q = Q(x). Разобьем тело на “слои” поперечными сечениями, проходящими через точки хi разбиения отрезка [a, b]. Т.к. на каком- либо промежуточном отрезке разбиения [xi-1, xi] функция Q(x) непрерывна, то принимает на нем наибольшее и наименьшее значения. Обозначим их соответственно Mi и mi.
Если на этих наибольшем и наименьшем сечениях построить цилиндры с образующими, параллельными оси х, то объемы этих цилиндров будут соответственно равны MiDxi и miDxi здесь Dxi = xi-xi-1.
Произведя такие построения для всех отрезков разбиения, получим цилиндры, объемы которых равны соответственно и .При стремлении к нулю шага разбиения l, эти суммы имеют общий предел: = Таким образом, объем тела может быть найден по формуле:
21.Определение определенного интеграла Если при любых разбиениях отрезка [a, b] таких, что maxDxi® 0 и произвольном выборе точек ei интегральная сумма стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b].
Условный экстремум.
Условный экстремум находится,когда переменные х и у, входящие в функцию u = f( x, y), не являются независимыми, т.е. существует некоторое соотношение
j(х, у) = 0, которое называется уравнением связи.
Тогда из переменных х и у только одна будет независимой, т.к. другая может быть выражена через нее из уравнения связи.
Тогда u = f(x, y(x)).
В точках экстремума:
=0 (1)
Кроме того:
(2)
Умножим равенство (2) на число l и сложим с равенством (1).
Для выполнения этого условия во всех точках найдем неопределенный коэффициент l так, чтобы выполнялась система трех уравнений:
Полученная система уравнений является необходимыми условиями условного экстремума. Однако это условие не является достаточным. Поэтому при нахождении критических точек требуется их дополнительное исследование на экстремум.
Выражение u = f(x, y) + lj(x, y) называется функцией Лагранжа.