Исследование функции на монотонность с помощью производной.
Если x2>x1, f(x2)>f(x1), то ф-ция монотонно возрастает
Если x2>x1, f(x2)<f(x1), то ф-ция монотонно убывает
Монотонность - постоянство
Необходимые признаки:1)если ф-ция f(x) всюду в интервале возрастает, то ее производная в этом интервале неотрицательна (f`(x)>=0)
2)если ф-ция f(x) всюду в интервале убывает, то ее производная в этом интервале неположительная (f`(x)<=0)
3)если ф-ция f(x) всюду в интервале постоянна, то ее производная в этом интервале =0 (f`(x)=0)
Достаточные признаки монотонности: 1)если f`(x) в интервале положительна, то ф-ция f(x) возрастает в этом интервале.
2)если f`(x)<0, то ф-ция f(x) возрастает в этом интервале.
3)если f`(x)=0, то ф-ция f(x)=const на интервале.
x1<a<x2, x2-x1>0, x2>x1
1. если f`(a)>0, то f(x2)>f(x1)
2. если f`(a)<0, то f(x2)<f(x1)
3. если f`(a)=0, то f(x2)=f(x1)
Точки экстремума функции. Признаки точек экстремума
Точка х называется точкой max ф-ции, если значение ф-ции в этой точке - наименьшее в некоторой ее окрестности.
1- локальный max
2- локальный min
3- глобальный max
4- глобальный min
если tga>0, то f`(x)>0
если tga<0, то f`(x)<0
Необходимый признак экстремума: ф-ия f(x) может иметь max и min только в тех точках, в которых f`(x)=0 или не существует.
(В них можно построить ¥ касательных).
Достаточный признак: точка х0 является точкой экстремума, если ее производная в этой точке меняет знак:
- если с “+” на “-”, то х0- т. max
- если с “-” на “+”, то х0- т. min
Выпуклость и вогнутость графика функции. Точки перегиба.
Линия называется выпуклой, если она пересекается с любой своей секущей не более чем в 2х точках.
Линия наз-ся вогнутой, если она целиком лежит по 1 сторону от касательной, проведенной в любой ее точке.
Точка перегиба - точка, отделяющая выпуклый участок дуги от вогнутого.
Необходимый признак выпуклости и вогнутости: если линия на интервале выпуклая, то ее 2я производная <=0; если линия на интервале вогнутая, то ее f``(x)>=0
Достаточный признак: если f``(x) всюду в интервале “-”, то линия в интервале выпуклая; если f``(x)>0, то линия вогнутая
Признаки точки перегиба: чтобы X0 была т. перегиба, <=> чтобы у`` в этой точке = 0 и меняла знак при переходе х через х0.
Схема исследования функции. Показать на примере.
Найти:
-обл. определения ф-ции
-точки разрыва и интервалы, где ф-ция явл-ся непрерывной
-поведение ф-ции в окрестностях точки разрыва, вертикальной асимптоты
-т. пересечения графика с осями координат
-симметрия графика (чет./нечет):
f(-x)=x симметрична относительно осей
f(-x)=-x симметрична относительно О(0,0)
-периодичность
-интервалы монотонности
-точки экстремума
-наибольшее и наименьшее значение
-выпуклость, вогнутость
-точки перегиба
-поведение ф-ции в безконечности, наклонная и горизонтальные асимптоты
-нанесение на график.
Пример 1
Исследовать и построить график функции
1). Заметим, что знаменатель имеет корни 1 и2, так что функцию можно представить в виде
Т.к. , отсюда следует, что области определения функции
2)Определим тип функции, т.е. четная,нечетная или общего вида функция.
3) ,следовательно x=1 и x=2 является точкой разрыва II рода, что в свою очередь
Даёт нам две вертикальные ассимптоты.
4)С ox: y=0
C oy: x=0
Пользуясь методом интервалов (известным из школьной программы), определим знак функции на интервалах между корнями и точками разрыва. Таких интервалов получается пять:
На этом рисунке знаком + отмечены те интервалы, на которых функция положительна, и знаком - те, где она отрицательна.
5) Найдём производную:
Решением квадратного неравенства служит интервал
6) Найдём вторую производную:
7)Построение графика.